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ABSTRACT
5G networks are considered potential enablers for many emerging
edge applications, such as those related to autonomous vehicles,
virtual and augmented reality, and online gaming. However, recent
works have shown the cellular control plane is a potential bottle-
neck in enabling such applications — control plane operations are
slow, frequent, and can directly impact the delay experienced by
end-user applications. Moreover, failures in the cellular control
plane can significantly degrade application performance. In this
paper, we consider the problem of enabling latency-sensitive and
safety-critical edge applications on 5G networks. We identify fun-
damental control plane design challenges and posit enabling these
applications requires re-thinking the cellular control plane. We
propose a new edge-based cellular control plane, CellClone, which
provides fast and fault-tolerant control plane processing. CellClone
employs multiple active control plane clones at the network edge to
mask control plane faults and speedup control processing. Central
to its design is a custom quorum-based consistency protocol that
provides state consistency with low latency. Testbed evaluations
using real cellular traces show a median improvement of more than
3.8× in speeding up control plane operations with outright node
failures and stragglers. These improvements translate into better
application performance; with CellClone, autonomous cars and VR
applications reduce missed application deadlines by more than 90%.
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1 INTRODUCTION
5G and next-generation cellular networks aim to support emerging
latency-sensitive and safety-critical applications, such as safety
applications for connected and autonomous vehicles [13, 47, 105],
virtual and augmented reality [34, 94], remote surgery [20, 41], and
multi-player online gaming [95, 104]. These applications place new
demands of high reliability and ultra-low latency on the 5G cellular
infrastructure, e.g., VR applications with head tracking systems
require an end-end latency of less than 17ms to achieve perceptual
stability [94] and edge-assisted safety applications for connected
and autonomous cars have strict network delay budgets of about
20ms or less [105].

To reduce end-end delays and enable such applications, 5G net-
works are building support for Edge Computing [39, 94]; a paradigm
whereby applications are hosted closer to the users, on cell towers,
cell aggregation sites, or other edge sites [37–39]. Many cellular
providers are working with major cloud providers for deploying
edge applications inside the cellular infrastructure [59, 72, 96].

However, there remain fundamental challenges in enabling such
applications on cellular networks. A key architectural challenge
is the design of the cellular control plane in the core; unlike the
Internet control plane, it maintains a dynamic state for each user
device to provide mobility support and session management. As
a result, whenever a user moves, a user device enters into power-
saving mode, or a device creates a new session, its control plane
state needs to be updated, which in turn triggers data plane updates.
The time taken by control plane operations can add delays on top
of the delays provided by the underlying data plane of the radio
access network (RAN) and cellular core network.

Prior work [15, 65] has shown that cellular control plane oper-
ations are slow, frequent, and cause delays in data services. A 19-
month study [65] conducted across four major US carriers showed
that control functions contribute 72–999ms delays in session es-
tablishment. Similarly, mobility handovers can cause 24-178ms
delay in retaining data services. These delays can translate into
poor performance for latency-sensitive applications, e.g., causing
autonomous vehicles to miss 90% of application deadlines due to fre-
quent handovers, which require migration of session state [15]. Im-
portantly, control plane operations are frequent, e.g., handover can
happen on average every 70 s in a walking scenario for a user [65].
Furthermore, the frequency of control messages is increasing with
5G deployments [81].

To reduce control plane delays for latency-sensitive applications,
cellular networks are considering edge-based deployments of cellu-
lar core functions [29, 35]. In this paper, we posit that even with an
edge deployment, providing fault-tolerant and fast cellular control
processing remains an important challenge. Failures in the control
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plane can hurt applications’ performance [15, 23, 65, 84], causing
up to 11 s delay in data access. These failures can cause state in-
consistencies between the user device and the control plane in the
core, contributing to increasing delays [15]. As cellular providers
are rapidly shifting towards network function virtualization for
their core network [12, 21, 74, 100], failures are expected to be
commonplace, akin to the traditional data center and cloud de-
ployments [31, 54, 55, 66]. Consequently, providing low control
plane delays despite control plane faults will be vital for enabling
emerging edge applications.

In this paper, we first identify the key design challenges in pro-
viding fast and consistent control processing, despite control plane
faults. Before proceeding, we note that the 5G standard [10] leaves
the choice of specific control plane replication and fault tolerance
strategy to operators.
• C1: High Delays with Synchronous Replication: A natural
design option to provide fault tolerance and satisfy state consis-
tency requirements is to use synchronous replication. However,
synchronous replication is known to add significant delays as the
state updates need to be stored in at least a majority of replicas
before it is safe to respond back to the client [60]. In the cellular
context, one such example is ECHO [84], a recent fault-tolerant
cellular core. Our testbed experiments show that ECHO adds sig-
nificant delays in completing cellular control procedures, which
in turn severely degrades the performance of latency-sensitive
applications (§3.1). A key challenge is to reduce the delay cost of
providing consistency in the cellular context.
In contrast, to reduce control plane delays, several state-of-the-

art control plane proposals [15, 23, 80] use asynchronous replication.
Among these proposals, Neutrino [15] provides state consistency
by combining asynchronous replication with a replay-based mecha-
nism. However, we show that asynchronous schemes can introduce
inconsistencies and delays when dealing with node failures and
stragglers.1

• C2: Inconsistency Due to Non-determinism: Our extensive
analysis of the 5G standard [6] and several open-source 5G/4G
implementations reveals that the cellular control plane executes
a diverse set of non-deterministic operations (e.g., random ID
generation, several timers, authentication vectors) (§3.2). Replay-
based asynchronous designs can lead to incorrect failure recovery
and disruptions in data services unless they explicitly handle non-
determinism. One possible solution could be to ask developers to
re-write code to avoid non-determinism. However, our analysis
of different control plane implementations reveals this may not
be viable as some of the reasons for non-determinism include
security. In contrast, providing consistent processing with non-
deterministic operations without introducing significant delays
is challenging.

• C3: Failure Detection can be a Potential Bottleneck: State-
of-the-art cellular core designs [15, 23, 58, 76, 80] are primary-
based, where only a single stateful node actively processes a
user’s control traffic. These designs lead to a two-step failure
recovery process; first detect the failure and then mitigate it.
Our experiments show if the primary node fails, the time to

1Stragglers are slow nodes, caused by hardware faults, software faults, or overload
and known to be commonplace in datacenter and cloud deployments [31, 54, 55, 66].

detect failures can become a bottleneck in speeding up the overall
failure recovery in an edge deployment (§3.3). A fundamental
challenge is to significantly speed up failure detection without
compromising on failure accuracy [27, 32] (§3.3).

• C4: Adverse Impact of Stragglers:We observe through experi-
ments that if the primary control plane node becomes a straggler,
the completion times of cellular control plane procedures are
adversely impacted, which in turn degrades the performance of
latency-sensitive applications (§3.4). A key reason is that cellular
control plane procedures are short – in the order of a few hun-
dred milliseconds [15, 65, 80]. This introduces a key challenge
for mitigating stragglers; traditional speculation-based straggler
detection techniques [17, 18, 31, 42, 89, 91, 102, 103] would not
be effective because of the long waiting time before switching to
a non-straggler node [16].
To address the above issues and enable emerging edge appli-

cations on 5G, we design and implement a new cellular control
plane, CellClone. In designing CellClone, we synthesize several clas-
sical distributed systems ideas while leveraging multiple cellular
domain-specific insights. Below, we describe the key ideas in our
design.
• Active Replication (to handle C3 and C4): Instead of waiting
and trying to predict control plane failures and stragglers, Cell-
Clone takes a proactive approach whereby multiple control plane
nodes (clones) actively process a user’s traffic, store and perform
state updates, and generate output messages. This approach can
mask the impact of stragglers and failures. However, a concern
is the cost of extra processing. Firstly, we note that 5G networks
are divided into multiple independent slices serving different
classes of traffic [88] and the extra resources for CellClone will
only be used for the 5G network slices serving latency-sensitive
and safety-critical edge applications.2 Secondly, we show pro-
cessing cost in CellClone can be substantially reduced by using a
recently proposed optimized serialization engine for cellular con-
trol messages [15]. Overall, we argue this is a reasonable tradeoff
to enable new edge applications on 5G.

• Fast Consistency Protocol (to handle C1):We design a custom
quorum-based consistency protocol that provides state consis-
tency under failures while incurring a low delay overhead under
normal (failure-free) scenarios. We leverage cellular-specific op-
timizations, based on two key observations: (i) cellular clients
(users) are stateful and can be used to invoke stateful failure re-
covery to ensure correct processing, in case none of the replicas
are up-to-date [15, 65]. We use this observation to minimize the
need for synchronous replication. (ii) Our analysis of state opera-
tions in the control plane reveals that a majority of operations are
deterministic and we decouple the processing of deterministic and
non-deterministic operations. This allows us to efficiently deal
with deterministic operations and devise separate mechanisms
for non-deterministic operations.

• Individualized Approach to Non-Determinism (to handle
C2): A general strategy to deal with non-determinism is to use
one replica for synchronizing other replicas, which suffer from

2In the 5G jargon, this refers to the Ultra-Reliable and Low-Latency communication
(URLLC) class.
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Figure 1: An abstracted view of the 5G architecture.

at least one additional RTT. Instead, our analysis of the non-
deterministic operations in the cellular control plane reveals that
there are opportunities for reducing these delays. We classify
the different sources of non-determinism in the cellular control
plane into three categories and design an approach to deal with
each class individually with low failure-free overhead. Through
this individualized approach, CellClone avoids two-phase syn-
chronization for a majority of such updates (§4.4).

We implement the main cellular control plane function (CPF) and
control traffic aggregator (CTA) in CellClone. Our CPF implemen-
tation is based on OpenAirInterface [53]. Our code is written in
C/C++ programming language and is ≈5000 lines of code. We have
made the source code of CellClone publicly available [78]. We com-
pare CellClone with recent fault-tolerant control plane proposals
such as ECHO [84] and Neutrino [15]. We also evaluate against an
Existing 5G control plane implementation [53], which requires the
user to re-attach to the network on the CPF failure (§6.2). CellClone
improves control delays under failures by more than 2.8× and 4×
as compared to Neutrino and Existing 5G, respectively. CellClone’s
performance in failure-free scenarios is comparable to Neutrino and
more than 58× better as compared to ECHO. These improvements
can significantly boost the performance of edge applications; with
CellClone, autonomous vehicles and VR applications can reduce
missed application deadlines by more than 90%. CellClone achieves
this while providing better scalability than ECHO and comparable to
Neutrino. To reduce the resource footprint of CellClone, we integrate
it with a fast serialization engine for cellular control traffic [15],
which reduces the resource footprint by up to 40%.

2 BACKGROUND AND MOTIVATION
2.1 Cellular Background
Cellular Network Architecture: A cellular network consists of (i)
the Radio Access Network (RAN), consisting of base stations, and
(ii) the Core Network, connecting the RAN with the Internet and
operator services. Figure 1 shows a simplified 5G network architec-
ture. Base stations (BS) provide first-hop wireless connectivity to
the user device, known as User Equipment (UE). The User Plane
Function (UPF) forwards the data traffic between the base stations
and the Internet. The Control Plane Function (CPF) provides a vari-
ety of management functions that support user mobility, session
management, radio resource allocation, and device authentication.
By CPF, we refer to the Access and Mobility Functions (AMF) and
Session Management Functions (SMF) in 5G. In a standalone 5G
architecture, a 5G user is served by a 5G RAN and 5G core net-
work. However, most of today’s 5G deployments are based on a

non-standalone architecture where 5G users are served by a 5G
RAN and 4G core network [93]. In an edge-based deployment, the
CPFs may be deployed at cell towers, cell aggregation sites, or other
edge sites [15, 70]. In addition, front-end load balancers, also called
control traffic aggregators (CTAs), are typically deployed between
base stations and cellular core [15, 23, 80].
Nature of Control Plane Operations: The cellular control plane
maintains a per-user state (size ≈5KB for each user), which gets
updated on short-time scales. When a user creates a new session,
the device moves, or the user device enters power-saving mode, the
control plane state needs to be updated. These updates are done
through request-response messages, also referred to as control pro-
cedures [6], representing a set of related updates. For example, on
user mobility, a handover procedure is triggered that exchanges
several messages between the device, base station, and the CPF.
These messages lead to several state variables updates in the CPF,
e.g., a cell identifier, tracking area, and user tunnel identifiers. The
CPF may also invoke external actions, e.g., ask the UPF to create a
data session for the user, or fetch information from the subscriber
database server (HSS). Existing 5G control plane standards [10]
describe that the control plane state can be replicated in another
peer control plane function or an external data store, USDF (Un-
structured Data Storage Function) [10]. However, they leave the
design and implementation to the operators.

2.2 Emerging Edge Applications
There are many emerging latency-sensitive and safety critical ap-
plications that will be deployed at the network edge. CellClone
is targeted toward enabling such applications over 5G. Below we
discuss some of these applications.
Autonomous Vehicles: Autonomous vehicles can leverage edge
computing [105] and sensing capabilities [47], such as infrastructure-
mounted LiDARs and stereo cameras, for safer and more efficient
driving. In this class of applications: (i) vehicles augment their
onboard perception with other vehicles or infrastructure sensing
capabilities, and(/or) (ii) offload computations like planning opera-
tions to the edge for more efficient driving. These applications have
strict latency budgets on the order of a few to tens of milliseconds
and hence must be hosted at the network edge.
Mobile VR:Mobile devices running VR applications can offload
computation to an edge host for efficiency [38]. There are several
example of Edge-based VR services [48, 57, 97]. These applications
require ultra-low latency in the order of a few ms [85] and require
cellular service continuity as the user moves around [38].
Multi-Player OnlineGaming:Massivemulti-player online games
are another example services that can be deployed at the network
edge to achieve ultra-low-latency [22, 67, 104]. Such applications
can have latency budgets in the order 20ms.
Edge Video Analytics: Real-time video analytics is considered
a killer application for Edge Computing [19, 73]. Video analytics
when performed at the network edge can provide low latency and
avoid the use of expensive network links to stream videos to the
cloud [25]. Various edge analytics-based applications, such as traffic
dashboards for urban mobility [19] require mobility support from
5G.
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2.3 Requirements for 5G Control Plane
There are three important properties that a cellular control plane
should satisfy for enabling the above edge applications:
(1) Low delays in completing control operations under normal

(failure-free) scenarios to provide fast data access.
(2) Fast failure recovery from control plane faults to minimize dis-

ruptions.
(3) Satisfy cellular state consistency requirements, specifically pro-

vide ‘Read your Writes’ consistency, to avoid long delays due
to state inconsistencies [15, 84].

3 CHALLENGES
In this section, we identify the key challenges in designing a fast and
fault tolerant cellular control plane to enable edge applications over
5G. We drive this discourse through quantitative and qualitative
discussions of existing designs.

3.1 Delays with Synchronous Replication
A natural design option to provide fault-tolerance and state con-
sistency is to use synchronous replication. However, synchronous
replication can have high delay overheads. To quantify the impact
of synchronous replication on the cellular control plane delays and
application performance, we implement ECHO.3 ECHO uses an
external data store, ZooKeeper [107], for storing the control plane
state. ZooKeeper writes are performed by a leader synchronously
through a two-phase commit protocol [46, 107]. Figure 2 shows the
increase in handover procedure completion time (PCT), in compari-
son to two other baselines, Existing 5G and Neutrino. ECHO is more
than 34× slower as compared to these designs even when the con-
trol plane is handling only one user per second. The performance
of ECHO degrades more than three orders of magnitude as the load
on the CPF increases. We observe that this can translate into severe
degradation of latency-sensitive applications, e.g., VR applications
regularly missing deadlines during a handover procedure.

Figure 2: Comparison of handover procedure completion
time (PCT).

Challenge: Our analysis reveals that one key challenge is that
cellular control plane procedures (e.g., mobility handover , initial
attach) consist of a 1:1 ratio of read and write operations on the
3For implementation and evaluation details, see §6.

control plane state. While data stores like ZooKeeper speed up
reads and are effective for read-heavy workloads, speeding up write
operations while providing consistency is hard.

3.2 Inconsistency Due to Non-determinism
Alternatively, designs that use asynchronous replication can signif-
icantly speed up control processing but are susceptible to inconsis-
tencies with non-deterministic operations. Our extensive analysis
of 3GPP specifications [5, 10, 11] and several open-source 4G/5G
cellular core implementations (refer to Table 1) shows that a subset
of operations executed by CPFs are non-deterministic. These include
randomly generated identifiers like M-TMSI (MME Temporary Mo-
bile Subscriber Identifier), several timers, such as T3512 [6, 28, 36],
and generation of Authentication Vectors [7] (detail in §4.4), and
others.

Consider the following example scenario (shown in Figure 3)
through which we show how non-deterministic operations at CPF
can lead to incorrect behavior, and consequently cause long delays
in data access, during failure recovery. 1 A UE sends an initial
attach request message to the primary CPF. 2 The primary CPF
authenticates the device and assigns an M-TMSI, assuming its value
is 123. 3 The primary CPF fails after the initial attach procedure
completion but before the state synchronization happens with the
backup. 4 As part of the failure recovery procedure, the logged
messages (for the successfully executed initial attach procedure)
are replayed by the backup CPF. Here the backup CPF can take
either of the two implementation approaches: involve the device
as part of the failure recovery procedure or perform the failure
recovery locally. In the first case, the backup CPF tries to sync
M-TMSI with the device. It requests the device for identification
(through the Identity Request/Response procedure as defined in
[8]), and then communicates a new M-TMSI value; whereas in the
second approach, the backup CPF generates a new M-TMSI (say
M-TMSI = 456) without contacting the device and tries to mask the
failure recovery from the device. We find out that seamless failure
recovery is not possible for both implementations approaches, and
as a result, the device loses the network connection. 5a If the
backup CPF decides to sync M-TMSI with the device during failure
recovery, it needs to page the device with IMSI (known as paging
with IMSI procedure [8]). In this case, the device will perform the
re-attach procedure4 with the network and face temporary service
interruption. 5b In case, the backup CPF assigns M-TMSI locally
(say M-TMSI=456) then the device cannot be paged by the network
in the future – meaning the device will not be able to receive the
downlink data packets due to M-TMSI mismatch.
Challenge: To address this problem and ensure correctness, we
need to explicitly deal with non-deterministic operations. The chal-
lenge is to do so while incurring a minimal impact on control plane
delays.

4Refer to Section 5.6.2.2.2 in [8] that defines paging with IMSI as an abnormal procedure
used for error recovery in the network.
5Authentication vector contains a random number, generated as a part of the initial
initial attach procedure [7].
6IP address is allocated to the UE by the UPF on request from the CPF. DHCP based IP
address allocation is a non-deterministic operation.
7The CPF install T3512 on the UE to periodically reports its location and track its
reachability by a mobile reachable timer.
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Figure 3: An example of state inconsistency in message
replay-based schemes [15] due to non-determinism.

Table 1: Sources of non-determinism in 4G/5G implementa-
tions (Impl) and 3GPP specifications [8].

4G/5G Impl 3GPP Specifications

Source Code M-
TMSI

S10
TEID

Auth
Vec5

UE IP
Add6

Timer
T3512

7

OAI [53] ✓ ✓ ✓ ✓ ✓
Nucleus [51] ✓ NA ✓ ✓ ✓
Magma [40] ✓ NA ✓ ✓ ✓
CoLTE [92] ✓ NA ✓ ✓ ✓
srcEPC [98] ✓ NA ✓ ✓ ✓
Open5GS [82] ✓ NA ✓ ✓ ✓

3.3 Slow Failure Detection
In existing 4G/5G deployments, CPF failure detection is performed
through heartbeat messages by either the BS or another network
function like UPF, with timeouts in the order of tens of seconds[30],
with a default value of 30 seconds [50]. We conducted experiments
to understand the impact of the failure detection timeout (and the
corresponding heartbeat intervals) on latency-sensitive edge appli-
cations.

Figure 4: Impact of CPF failure detection timeout on an au-
tonomous vehicle application.

Figure 5: Increase in handover PCTwith false positive failure
detect ions.

Our experiments show that during CPF failures, the time to de-
tect failures has a significant impact on the time to complete control
procedures, which can translate into severe performance degrada-
tion for latency-sensitive edge applications like autonomous ve-
hicles and AR/VR applications. Figure 4 (top) shows that for an
autonomous vehicle,8 more than 90% of the application deadlines
are missed when CPF fails while the user is performing a handover
with a failure detection timeout of 30 s. As we decrease the failure
detection timeout, the percentage of missed deadlines decreases
considerably; with a failure detection time of 1s, the percentage of
missed deadlines drops to around 8% with Existing 5G and less than
3% with Neutrino. The drop in application performance is explained
by the corresponding increase in handover procedure completion
time (PCT) during a CPF failure, as shown in figure 4 (bottom).
Challenge: A challenge with simply using more aggressive fail-
ure detection timeouts is that it increases the likelihood of falsely
flagging a CPF as failed, which may in turn increase the load on
other CPFs [45, 69]. In the context of emerging latency-sensitive
applications, the delay budgets are so small that it is hard to find
a good tradeoff. Figure 5 shows that even in the case of one false
failure detection of CPF (not assuming idle backups), there is a 2×
increase in the time to complete the handover control procedure.

3.4 Adverse Impact of Stragglers
We observe that if the primary CPF is a straggler, the completion
times of control plane jobs are adversely impacted, which in turn
degrades the performance of latency-sensitive applications. Figure 6
shows the impact of a straggler CPF on the missed deadlines for a
Virtual Reality application. We observe that during the period a CPF
becomes a straggler there are three orders of magnitude increase in
handover PCT, which in turn translates into the application missing
deadlines for a window of 6-7 seconds. A key reason for this adverse
impact is that control plane jobs are very short. On the other hand,
ECHO is not impacted by a single straggler but its failure-free
handover PCT is more than two orders of magnitude higher than the
primary-based designs and as a result, the application performance
degrades for a window of 34 seconds.
Challenge: As the procedure completion times are in the order of a
few hundred milliseconds [15, 65, 80] which represents really short
jobs, the existing speculation-based straggler detection techniques
would not be effective for short jobs due to the wait time required
before switching to a non-straggler node [16].

8For information on the experimental setup, see §6.4.
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Figure 6: The impact of straggler CPF on a VR application
during handover.

4 DESIGN
To address the challenges discussed in §3, we design a new cel-
lular control plane, CellClone. In this section, we first provide an
overview of our design, explaining the motivation and intuition for
the key ideas. We then describe CellClone’s replication technique,
consistency protocol, and fault-handling process. We also discuss
the correctness of our design under failures.

4.1 Design Overview
Below we provide an overview of the key ideas in CellClone.

Figure 7: CellClone’s system architecture.

Active Replication (to handle C3 and C4): CellClone leverages a
form of active replication whereby multiple CPF replicas process a
user’s traffic, store and perform state updates, and generate output
messages. These CPFs independently process a message and gener-
ate a response. This form of replication moves faults off the critical
path. In contrast to ECHO’s [84] use of a non-optimized external
data store, CellClone uses a custom local state store.
Custom Quorum for Fast Response Time (to handle C1): Cell-
Clone implements a fast quorum-based protocol to reduce control
plane delays. In contrast, traditional quorum-based protocols [63,
86] can be slow as they have to wait for at least a majority of nodes
to respond before they can send back the response to the UE to
ensure consistency. In other words, the read (𝑅) and write (𝑊 ) quo-
rums should always intersect (𝑅 +𝑊 > 𝑁 where 𝑁 is the quorum
size) to ensure consistency and𝑊 > 𝑁 /2 (for majority quorum) to
provide fault tolerance. Our approach is to speed up the processing
by avoiding the 𝑅 +𝑊 > 𝑁 &𝑊 > 𝑁 /2 constraints. To ensure

state consistency, we avoid serving the user with out-of-sync CPF
[61] by keeping additional per-user state at the CTA (§4.3) during a
procedure execution. To enable this, CellClone uses three key ideas:
(i) it implements out-of-sync replica tracking at the CTA and avoids
using responses from out-of-sync CPFs, (ii) in the event when all
CPF replicas become outdated, it invokes state recovery from the
UE to ensure correctness, and (iii) decouples the processing of de-
terministic and non-deterministic operations to avoid two-phase
synchronization for deterministic operations, as shown in table 2.
Individualized Approach to Handle Non-Determinism (to
handle C2): As multiple CPFs independently process a user’s con-
trol messages and perform local state updates, the subsequent out-
put messages from different CPFs may be different because of a
non-deterministic operation. If not handled correctly, this can lead
to users experiencing disruptions in data services. A strawman ap-
proach could be to roll back the state for the UE on the out-of-sync
CPFs from an up-to-date CPF on every non-deterministic operation.
This approach will work correctly but at the cost of one RTT delay
on every non-deterministic operation. In contrast, we devise an
individualized approach to provide negligible delay for most of
the non-deterministic operations as depicted in table 2. We first
classify the different sources of non-determinism in the cellular
control plane into three broad categories; (a) UE triggered local
non-determinism, (b) non-determinism due to external actions from
the CPF, and (c) non-determinism due to various timers (§4.4). We
then identify how each type can be handled with low overhead.
We describe in §4.4 our individualized approach to dealing with
different classes of non-determinism.
Resultant Architecture: CellClone re-architects the key cellular
control plane entity; referred to as Mobility Management Entity
in 4G/LTE packet core [3] and Access and Mobility Management
Function (AMF) and SessionManagement Function (SMF) in 5G [10].
Figure 7 shows CellClone’s overall system architecture. BSs directly
connect to the CTA. The CTA forwards every control message to
members of the quorum. All communication to and from a CPF
happens through a CTA while the rest of the network functions
can directly communicate with each other. All the CPFs process
the request and send a response to the CTA. The CTA filters out
duplicate responses and relays the fastest response (assuming𝑊 =

1) to the BS.

4.2 Active replication in CellClone
Quorum Selection: In CellClone, control plane messages are sent
to a group of replicas that form a quorum. A quorum in CellClone
consists of total 𝑁 nodes. The write quorum size,𝑊 , can be set to
1 or more replicas (𝑊 ≤ 𝑁 ).𝑊 determines the durability of the
state. For instance,𝑊 = 2 implies the CTA will send a response to
the BS only when replies from at least two CPFs are received. For
𝑊 = 1, the fastest response from a CPF is relayed to the BS. In this
case, there is a good chance that an up-to-date user state exists on
more than one CPF and a CPF failure can be completely masked
from the user, however, interruption-free failure recovery cannot
be guaranteed. Setting a higher value of𝑊 provides durability at
the cost of extra delays (§4.5). However, irrespective of the value of
W, CellClone can provide ‘Read your Writes’ consistency. We allow
𝑁 and𝑊 to be configurable by the cellular network operator.
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Mechanism Scope Benefit Overhead
Active replication All operations Masks faults Negligible
Duplicate filtration All operations Correctness Negligible

Out-of-sync CPF tracking All operations Correctness Negligible
State rollback recovery Small % of non-deterministic operations Correctness One extra RTT

State recovery from the UE Rare: Failure of CTA and ≥𝑊 CPFs failures Correctness Reattach cost
Table 2: A summary of key mechanisms in CellClone.

Figure 8: Temporary meta-state for the user at the CTA dur-
ing control plane operations execution.

Duplicate Filtration at the CTA: The CTA forwards every con-
trol message, along with a logical clock timestamp [62], to all the
quorum members. Every quorum member performs state updates,
generates a response message, and sends it to the CTA with the
same logical clock timestamp. The CTA uses a pair of user unique
ID (IMSI or M-TMSI) 9 and logical clock timestamp to filter out
duplicate replies (i.e., replies with the same logical timestamp). The
CTA routes the fastest response to the BS/UE and drops the rest of
the replies.

4.3 Quorum-based consistency protocol
Out-of-Sync CPF Tracking: Always using the fastest response(s)
from a quorum of CPF replicas can lead to inconsistencies. One key
goal in CellClone is to avoid the use of responses from out-of-sync
CPF replicas. For this purpose, the CTA tracks out-of-sync replicas
that lag behind the other CPFs during the state update operations.
Figure 8 shows a sequence of operations performed at the CTA
during the execution of a control plane procedure. The sample
procedure has a total of 2 messages, M1 and M2. The quorum in
this sample scenario consists of 3 CPFs and a write quorum of 1 CPF.
During a procedure, CTA maintains a per-user temporary meta-
state to track the out-of-sync replicas. The temporary meta-state
includes, (i) the logical clock associated with the control message
before forwarding, and (ii) the logical clock associated with the
response from each CPF in the quorum. The CTA relays the fastest
response from an up-to-date replica (a replica that acknowledged
the reception of all control messages in sequence) to the UE. In
figure 8 the horizontal axis represents time. The sequence of steps
are as follows:

9International Mobile Subscriber Identity (IMSI) is a user’s permanent ID and only
included in first message to the CPF. Cellular networks avoid frequently exposing IMSI
due to security reasons, therefore, M-Temporary Mobile Subscriber Identity (M-TMSI)
is used for subsequent messages.

(1) On reception of the first message (M1) from the UE, CTA creates
a temporary meta-state for the UE. Message M1 is associated
with a logical clock (20) and the CTA forwards M1 (with its
logical clock) to the quorum. The CTA also caches the logical
clock value in its volatile memory.

(2) Every member of the quorum replies to the CTAwith the logical
clock of M1 (20). The CTA forwards the fastest response (from
replica B) to the UE. Figure 8 shows that the reply (with logical
clock 20) for M1 is received from all the replicas.

(3) For M2, CTA receives the fastest response from replica A (with
logical clock 68) and no response is received for it from replicas
B andC. The CTA starts failure detection timerT1 (configurable
timeout) when the procedure completes on the fastest CPF, i.e.
A in this case.

(4) Before the expiry of timer T1, replica B responds for M2 (with
logical clock 68) to the CTA. Replica C remains out-of-sync at
this stage.

(5) Failure detection timer T1 expires. The CTA marks replica C
as failed. Replica C can no longer serve the UE.

(6) The CTA deletes the temporary meta-state for the UE.
Next, we discuss different scenarios in the context of figure 8.

Normal scenario: In normal scenarios, all the quorum members
behave just like replica A. In step 3, a response is received from all
the quorum members and temporary UE context is deleted on the
reception of a response from all the members.

Straggler scenario: In this scenario, at least one of the quorum
members is outdated at step 3 (replica B in figure 8). However, the
straggler nodes are able to catch up before the expiration of timer
T1.

Failure scenario: In this scenario, at least one of the quorum
members (replica C in figure 8) has not responded even on the
expiry of timer T1. In this case, the CTA marks the outdated replica
as failed.

4.4 Handling Non-Determinism at the CPF
Given some initial same state on the CPFs, a non-deterministic
state update can produce different state on different CPFs. We
classify non-deterministic operations at CPF into three categories
and describe specific mechanisms for handling them with minimal
overhead while providing consistency.
UE Triggered Local Non-Determinism at CPF: In this case, the
non-deterministic operation is executed at the CPF as a result of a
request received from the UE. For instance, during the initial attach
procedure, the CPF assigns M-TMSI (a temporary user ID used)
to each user. The M-TMSI is a local user ID, unique only within
the CPF, and allocated through a random number generator. This
implies that all the quorummembers may assign a different M-TMSI
to the same UE that violates the UE state consistency requirement.
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To ensure correct control processing, a key requirement here is that
every CPF must have the same M-TMSI value.

To handle this issue, CellClone (i) modifies CPFs to add a non-
determinism flag along with the corresponding modified state when
they send a message response to the CTA, and (ii) enables CTA
to choose the response that came from the fastest CPF. The CTA
informs the fastest replica that its response is used to roll back the
state on the rest of the replicas before replying to the UE. This
information is useful for consistent recovery of the CTA, in the
event it fails after a non-deterministic execution on the CPF but
before being able to roll back state on the rest of the replicas (§4.5).
This type of non-determinism incurs one RTT overhead, however,
it is observed only in the initial attach procedure.
Non-Determinism due to External Actions at CPF: A non-
deterministic operation may be executed at an external node as
a result of a request received from the UE. For instance, during
the initial attach procedure, the CPF requests HSS (Home Sub-
scriber Server) for security authentication of the user and UPF for
IP address allocation. For security authentication, the HSS provides
multiple Authentication Vectors (AVs) to the CPF. Each AV contains
a random number (required for user’s security) generated at the
HSS. Similarly, UPF may assign an IP address to the UE through a
DHCP server. In both cases, every member of the quorum may end
up getting different AVs and IP addresses.

CellClone handles this issue with duplicate message filtration at
the CTA.10 Every quorum member generates a request for AVs/IP
toward the HSS/UPF through the CTA. The CTA forwards only the
fastest request to the HSS/UPF. On reply to the message, the CTA
forwards it to the quorum, and as a result, the state consistency
requirement is satisfied.
Timer-Triggered Local Non-Determinism: The third case of
non-determinism arises because of asynchronous state transition
at the CPF due to a local event (e.g., timeout). Each CPF maintains
various timers per UE for different purposes, e.g., T3512 [36] for
tracking the UE location for network-originated services [9]. A
potential issue is that the same timer for the same UE on different
CPFs may expire on different time instances. As a result, a UE may
have a different state on different members of the quorum. For
instance, triggering of the mobile reachability timer can cause a
UE to have different reachability status on different CPFs, which
violates user state consistency requirement. As a consequence, for
the same UE, some of the CPFs may reject the network-originated
data requests (due to the user not being available) and some of
them may send a paging message to the BS to wake up the UE. A
key requirement here is for the UE to have a consistent UE state
(available or not available) across every CPF. The fastest response-
based duplicate message filtration at the CTA also solves this issue.

4.5 Handling CTA Failure
In §4.3, we discussed how CellClone is transparent to CPF failures.
In this section, we discuss how a CTA failure can be recovered by
caching the temporary UE context (required at the CTA) at the CPFs
during a procedure execution. In CellClone, interruption-free CTA
failure recovery is possible only if𝑊 − 𝐹 >= 1 is satisfied when

10Alternatively, another node (switch) could be used to perform duplicate filtration for
request directed at HSS/UPF.

CTA failure happens, where𝑊 is the write quorum size and 𝐹 is
the count of failed CPFs. The𝑊 − 𝐹 >= 1 condition ensures that
at least one up-to-date CPF from the write quorum size survived
overlapping failure with the CTA. The information available at
the up-to-date CPF is enough to recover the temporary meta-state
context for the UE. We also illustrate this point through a specific
example in Appendix A.

4.6 Correctness Under Failures
In this section we describe how CellClone performs consistent re-
covery from various types of failures.
At Least One Up-to-Date CPF is Alive: In this case, at least one
up-to-date CPF survives failure. As the CTA avoids fallback on an
out-of-sync replica, the up-to-date CPF will be used to serve the
user ensuring state consistency.
All Up-to-Date CPFs Fail: In this case, all the CPFs having up-to-
date user state fail. The CTA avoids forwarding the user requests to
the out-of-sync replicas and asks the user to re-attach to re-create
a fresh consistent user state on all the 𝑁 CPFs.
CTA Failure: If the CTA fails, its lost state can be recovered with
the help of the cached state at the CPFs, provided at least one up-
to-date CPF is alive. In case there is no up-to-date CPF, the user
device is asked to re-create a fresh consistent user state on all the
𝑁 CPFs.

5 IMPLEMENTATION
We have implemented CellClone and all supporting components
and functions in the C/C++ programming language. A summary of
our implementation is given below:
Traffic Generator: Our traffic generator emulates both UE and
BS; it is based on DPDK (v 17.11 [2]) for fast I/O operations and is
similar to the traffic generator used in [90]. Our traffic generator
does not emulate wireless delays of the UE and BS. It replays real
cellular control traffic traces [83]. In our implementation, the base
station communicates with the CTA using S1AP/NGAP—the pro-
tocol currently used in 4G/5G networks between the base stations
and CPFs.
Control Traffic Aggregator: Our CTA module receives control
traffic from the BS through a custom DPDK application. A producer
thread reads packets from the NIC to ring buffers shared with
multiple consumer threads. Consumer threads read packets from
the shared ring buffers and transmit those to the quorum. We have
a similar multi-threaded design for communication from the CTA
to the BS. We use the DPDK hash table to track out-of-sync replicas.
Our CTA implementation consists of a total of 2019 lines of code.
Control Plane Function: Our CPF implementation supports the
following three control procedures: (i) initial attach, (ii) handover
with CPF change, and (iii) service request. To coordinate various
control procedures, we have implemented state machines at both
the CPF and the traffic generator. Our CPF implementation is based
on OAI [53] and in addition, handles the non-deterministic oper-
ations and also performs CTA failure detection and recovery. We
implemented two versions of CellClone:

(1) CellClone-ASN.1: uses ASN.1 [1] based serialization engine, also
used in existing 5G designs.

393



Enabling Emerging Edge Applications Through a 5G Control Plane Intervention CoNEXT ’22, December 6–9, 2022, Roma, Italy

(2) CellClone-FBs: uses the modified FlatBuffers (FBs) [43] based
serialization engine of Neutrino [15].

Our CPF implementation uses DPDK for fast IO operations. Specifi-
cally, we are using DPDK’s network interface APIs for communica-
tion with network interface cards and huge pages for fast memory
operations. We implement an in-memory state store for the users
using the STL map container. Our CPF modifications consist of a
total of 2886 lines of code.

6 EVALUATION
We evaluate the efficacy of CellClone in terms of 5G control-plane
procedures and applications, handling of failure scenarios, and
scalability. The summary of our evaluation results is as follow:
• Improvement in Procedure Completion Time (PCT) under
Failures: CellClone-ASN.1 improves PCTs by more than 2.8× and
4× as compared to Neutrino and Existing 5G, respectively under
failure scenarios.

• PCT Improvement with Straggler CPFs: CellClone-ASN.1 im-
proves PCTs by more than 3.8× and 6.2× as compared to Neutrino
and Existing 5G, with straggler CPFs.

• Performance under Failure-Free Scenarios: CellClone-ASN.1
performsmore than three orders ofmagnitude better as compared
to ECHO. CellClone-FBs perform up to 1.2× and 1.8× better as
compared to Neutrino and Existing 5G under normal scenarios.

• Applications’ Performance: CellClone significantly improves
the performance of autonomous vehicles and AR/VR applications
in both straggler and failure scenarios.

• Scalability and Sesource Utilization: CellClone is highly scal-
able with a modest increase in systems resources.

6.1 Systems Settings and Methodology
Our test setup consists of 11 co-located servers running Ubuntu
18.04.3 with kernel 4.15.0-74-generic. Each server is a dual-socket
with 18 cores per socket, Intel Xeon(R) Gold 5220 CPU @ 2.20GHz,
and with a total memory of 128GB. All servers are also equipped
with Intel X710 40 Gb (4 x 10) NIC. Five servers are used for the
control plane, one for the control traffic generator, one for CTA,
and three for multiple CPFs running as independent processes.
Three servers are used for the user plane, each one hosts Intel’s
UPF [52], edge application server, and client application (such as an
autonomous vehicle or AR/VR), respectively. Three servers host a
ZooKeeper [49] cluster for ECHO [84] evaluation. Our experiments
are run with real control traffic traces collected from ng4T [83]. Our
open-source [78] traffic generator emulates two different types of
control traffic loads: (i) procedure-specific uniform control traffic
load to emulate a fixed number of control procedure requests per
second and (i) 10Gbps bursty traffic to emulate a large number
of IoT devices sending requests in a synchronized pattern. Our
evaluation results represent both uniform (with 10K procedures per
second) and bursty control traffic.
Failures: Failuremeans a CPF is unable to respond to the BS due to a
hardware/software fault or network partitioning. In our evaluation,
CPF failure is induced through a script by killing the correspond-
ing process. By default, one CPF is killed, otherwise specified. A
heartbeat (HB) and a timeout-based mechanism are used to detect
the failure.

Stragglers: Our straggler implementation is similar to [24]. We
consider two types of stragglers:
T-Straggler : For temporary straggler (T-Straggler), we randomly
delay responses for 10% of the control messages — by delays expe-
rienced by messages in the 90𝑡ℎ percentile.
P-Straggler : For permanent straggler (P-Straggler), we delay all the
control messages by a factor equal to the median control delay
when a CPF is subjected to 50% additional control traffic load [80].
Experimental Configurations: By default, the total number of
CPFs in the experiments is 6. CellClone’s quorum size for all the
experiments is 𝑁 = 3, with default write quorum size 𝑊 = 1,
however, we also show results for𝑊 = 2. All the experiments are
performed for 60 seconds, a default rate of 10K users per second,
unless specified otherwise.

6.2 Baselines
Existing 5G: It is a representation of the existing 4G/LTE MME
and 5G AMF+SMF [10] deployments, a modified version of the
OpenAirInterface [87] codebase. A single CPF actively serves the
UE and requires UEs to Re-Attach on a CPF failure due to the absence
of any protocol for consistent recovery from the backup by the 3GPP
[10]. Instead of kernel sockets, Existing 5G uses DPDK [2] for fast
I/O operations.
Neutrino: Our evaluation is based on the open-source codebase
[79] of Neutrino [14].
ECHO: It is a modified version of the Existing 5G and instead of
the internal state store, it uses ZooKeeper [49] for state storage. We
implement the best performing version "Disk-nFC" of the ECHO
[84], which avoids synchronous disk writes.

6.3 Latency improvement in Procedure
Completion Time (PCT) with CellClone

PCTs under Failure: Figure 9 shows median service request PCT
under a CPF failure, with different schemes. The figure shows that
in an ideal case when failure detection takes a negligible time (con-
figuration used in [15]), CellClone-FBs performance is 2.8× better
than Neutrino and 4× better than the Existing 5G. Here Neutrino is
3.3× better than Existing 5G. The figure also shows that CellClone
reduces PCTs by more than 103× as compared to all the primary-
based designs (Neutrino and Existing 5G), with the failure detection
time of 1 s. This is because the time to detect failures dominates
the total failure recovery time (before a user can be served by a
new CPF) in all the primary-based designs. The figure shows that
failure detection timeout does not impact both CellClone and ECHO.
This is because multiple active CPF clones process every control
message in CellClone, hence its performance under failure remains
similar. CellClone performs about 58× better than ECHO, because of
the improvement it provides over ECHO in normal cases. CellClone
performance under multiple failures remains similar as long as the
failed clones count is less than the write quorum size.
PCTs with Stragglers: Figure 10 shows service request PCTs when
a CPF behaves as a permanent straggler (P-Straggler) from 58-73
seconds. The figure shows that CellClone-FBs provide the lowest
PCTs at all times. Neutrino’s performance is closer to CellClone-
FBs in normal scenarios but more than three orders of magnitude
slower when the CPF is a straggler. Both ECHO and CellClone are
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Figure 9: Service request PCT comparison under failure, with
varying CPF failure detection timeouts.

Figure 10: A comparison of CellClone’s service request PCT
with other schemes in a P-Straggler scenario.

not impacted by the straggler but ECHO is up to 58× slower than
CellClone in median PCT, which is again due to the failure-free
improvement of CellClone over ECHO.
PCTs with Non-Deterministic Operations: Figure 11 shows
the comparison of the PCT of initial attach with different schemes.
In normal scenarios, CellClone-FBs provide the lowest median PCT.
The median PCT for CellClone-FBs and CellClone-ASN.1 is 0.7× and
0.8× of the median PCT for Neutrino and Existing 5G, respectively.
The figure shows that the fastest response-based CellClone design
performs better as compared to other schemes even when it incurs
one additional RTT (between the CTA and CPF) to keep a backup
of the non-deterministic operation (§4.4) at the CPF. In T-Straggler
case, CellClone-ASN.1 performs 4.2× better than Existing 5G, for
median PCTs. Similarly, in the case of P-Straggler, CellClone-ASN.1
performs more than three orders of magnitude better than Existing
5G and Neutrino in terms of median PCT. Performance of both
CellClone and ECHO are not impacted by the straggler but ECHO
provides more than three orders of magnitude higher completion
time as compared to CellClone.
PCTs under Failure-Free Scenarios: In figure 12, we compare the
performance of CellClone-ASN.1 with baseline ECHO & Existing 5G,
and CellClone-FBs with baseline Neutrino, in failure-free scenarios,
for three different procedures. The figure shows that for the fastest
replica-based reply configuration (𝑊 = 1), both CellClone-ASN.1

Figure 11: Initial Attach PCT comparison. Initial Attach in-
volves multiple non-deterministic operations.

and CellClone-FBs perform better than the respective baselines.
When CellClone waits for at-least two replicas before responding
to the user (𝑊 = 2), CellClone-FBs still perform better than Neu-
trino due to message logging and state checkpointing overhead in
Neutrino. ECHO is at least three orders of magnitude slower than
CellClone due to the use of an external store ZooKeeper not suitable
for the cellular workload. Here CellClone-ASN.1’s performance is
mostly close to the Existing 5G and at most 0.84× slower. When
CellClone waits for all the replicas before responding to the user
(𝑊 = 3), its performance is still three orders of magnitude better
than ECHO. Here CellClone-FBs’s performance is close to Neutrino
while CellClone-ASN.1 is slightly slower than Existing 5G. Our pro-
totype of Existing 5G does not implement any mechanisms for fault-
tolerance, therefore it incurs no failure-free overhead. However, in
practice when the Existing 5G will implement any particular fault-
tolerance protocol, the performance of CellClone in comparison to
Existing 5G will further improve.

6.4 Impact on Application Performance
To measure the impact of CellClone on application performance,
we interface Intel’s 5G UPF [52] with CellClone. A UE connected to
CellClone can create a new session, delete an existing session, and
modify the existing bearer on the UPF through the S11/N4 interface
[10, 11]. Our application data traffic passes through the UPF before
reaching the edge server.
Simulation Setup: To measure the impact of mobility on the appli-
cation performance, we set up two different client applications on
UE: (i) a CARLA emulator [26, 33] for self-driving cars and (ii) a VR
emulator [71]. Both of these applications offload processing to an
edge server [14]. The self-driving car periodically transmits sensors
data to the network edge to take driving decisions [68, 99, 106].
The VR application performs remote rendering on edge [101]. As
we aim to see the impact of network delay on applications during
handover , we do not perform any additional processing of the data
at the edge; the edge server simply sends a hard-coded response to
the application as soon as input data is received. On the client side,
we count the number of responses that miss the application-specific
deadline. We perform experiments for 5 minutes while the client is
subjected to a handover every 25 s on average.
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ECHO /CellClone-ASN.1 Existing 5G /CellClone-ASN.1 Neutrino /CellClone-FBs
Procedure 𝑊 = 1 𝑊 = 2 𝑊 = 3 𝑊 = 1 𝑊 = 2 𝑊 = 3 𝑊 = 1 𝑊 = 2 𝑊 = 3
Initial Attach 15K 13K 11K 1.18 1.04 0.89 1.77 1.4 1.12
Handover 9.3K 8.3K 7.4K 1.05 0.94 0.85 1.52 1.37 1.02

Service Request 9.5K 5.9K 5.3K 1.35 0.84 0.76 1.43 1.28 0.93
Figure 12: CellClone’s fault-free 99th percentile PCT comparison with existing systems for
write quorum size𝑊 = 1–3 and 𝑁 = 3. For fairness purposes, we compare CellClone-ASN.1 with ECHO & Existing 5G
and CellClone-FBs with Neutrino. Higher than 1 values represent improvement.

Figure 13: Impact of a straggler CPF on VR App.

Figure 14: Impact of failure detection on VR App.

Virtual reality (VR) applications require a latency of less than 16
ms [94] to achieve perceptual stability. Figure 13 shows the number
of application packets that miss the VR application-specific deadline.
The figure shows the performance of both CellClone and ECHO are
not impacted by straggler, but ECHO misses approximately 103
more deadlines as compared to the CellClone due to its failure-free
slow response. When users are served by a T-Straggler CPF, all the
primary-based systems missed at least 29 deadlines. For P-Straggler,
all the primary based designs missed more than 1500 application
deadlines compared to CellClone-ASN.1 that missed 12 deadlines.

Figure 14 shows the count of missed deadlines for a VR applica-
tion when different failure detection timeouts are used to detect
the CPF failure. It shows that even for the lowest failure detection
timeout, all the primary-based designs miss at least 103 deadlines,
whereas CellClone-ASN.1 misses 12 deadlines, irrespective of the
failure detection value. Both CellClone and ECHO are not impacted
by the failure detection timeout but still, ECHO misses approxi-
mately 1000 more deadlines as compared to CellClone because of
its failure-free slow response.

6.5 CellClone’s Scalability, Resource
Requirements, and Processing Delay

Scalability: Figure 15 shows the maximum service rate CellClone
can support to match the 99𝑡ℎ percentile procedure completion

Procedure Neutrino
[15]

ECHO
[84]

CellClone
ASN.1

CellClone
FBs

Init. Attach 40K 150 12K 71K
Handover 15K 80 6.8K 42K
Service Req. 150K 1 11.5K 125K

Figure 15: CellClone’s service rate comparison with other
schemes to match 99𝑡ℎ percentile PCT of the Existing 5G
when serving a burst of 10K users. Higher values are better.

Figure 16: CellClone’s normalized resources usage compari-
son with other proposals.

times of Existing 5G (with a burst of 10K active users). The figure
shows that overall both CellClone-FBs and Neutrino are the most
scalable designs when subjected to bursty control traffic. CellClone-
ASN.1’s performance is closer to the Existing 5G. The figure shows
that ECHO serves the least burst size because its performance de-
pends on ZooKeeper, which is not suited for cellular workloads.
Resource Utilization: Figure 16 shows the compute resources
required for different schemes with Existing 5G as a baseline. To pro-
vide a better performance, CellClone (CTA and CPFs combined) con-
sumes some extra resources. For 𝑁 = 2 and𝑊 = 1, CellClone-ASN.1
incurs up to 1.9× overhead compared to Existing 5G. CellClone-FBs
require a relatively modest increase of up to 1.2× in compute re-
sources as compared to Existing 5G. Neutrino requires the least
and ECHO the most compute resources, respectively among all the
schemes. For 𝑁 = 3 and𝑊 = 2, CellClone-ASN.1 and CellClone-FBs
require 2.8× and 1.7× compute resources respectively, as compared
to Existing 5G.
Processing Delay Comparison: Figure 17 compares the message
processing time at the CPF for CellClone with other schemes. The
figure shows that Neutrino and CellClone-FBs provide the lowest
message processing time, with a median value of 3 𝜇s. The median
message processing time for CellClone-ASN.1 and Existing 5G is
around 9 𝜇s, which is 3× higher as compared to the CellClone-
FBs and Neutrino. ECHO provides the highest median message
processing time of 1100 𝜇s, more than 120× higher than the rest
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Figure 17: CellClone’s processing delay comparison with
other systems.

of the designs. The variations across message processing times are
due to different messages in the initial attach procedure.

7 RELATEDWORK
Primary-based CPF Designs: Several recent proposals [15, 23, 58,
65, 76, 80] assume primary-based designs. SCALE [23] proposes
the use of consistent-hashing for scaling a software 4G/LTE MME
to handle increasing signaling load. MMLite [80] proposes the use
of skewed consistent hashing for distributing control traffic more
efficiently. SkyCore [76] broadcasts state updates to the neighboring
nodes to minimize control plane delays for handover. DPCM [65]
leverages device states to speed up the control plane operations
and handle transient radio failures. Neutrino [15] leverages modi-
fied FlatBuffers [44] to speed-up control operations and proposes a
failure recovery protocol, which is based on logging of control mes-
sages and structured geo-aware state replication. All these schemes
depend on failure detectors for failure recovery which can delay
switching to a new replica. Similarly, none of these designs handle
straggler nodes.
Quorum-based External State Store: ECHO proposes a 4G/LTE
control plane design with control processing replicated across mul-
tiple stateless processing threads and user state stored in an external
data store, ZooKeeper [49]. ECHO provides fault tolerance but our
evaluation shows the data store it uses is not optimized for 5G
cellular workloads.
Centralized Cellular Control Plane Architectures: There are
several proposals for architecting SDN-style cellular core [56, 64,
77]. A common theme in all these works is to have a logically
centralized cellular control plane (i.e., MME) with a programmable
data plane. However, unlike CellClone, centralized control plane
architectures may not be suitable for achieving low control plane
delays in edge deployments.
Consolidated Cellular Core Architectures: Other works con-
solidate cellular core data and control plane functions [75, 76, 90].
PEPC [90] slices the cellular core by users. It consolidates device
states and refactors core functions. PEPC improves the overall cel-
lular core performance. SoftBox[75] also proposes a consolidated
cellular core architecture. However, these designs do not provide
fault tolerance.

8 DISCUSSION
Failure Handling: Ensuring low latency data access also requires
failure handling of other network functions (such as unified data

management function and authentication server function) besides
the CPF. In this work, we focus on CPF failure handling as (i)
control plane operations performed by the CPF are more frequent
[65] as compared to the rest of the network functions (such as the
authentication server function) and (ii) it is difficult to handle due to
the highly dynamic per-user state it holds. The rest of the network
functions can be relatively easily handled.
Architectural Compliance with 5G: Any system that provides
fault-tolerance introduces a certain level of complexity in design
in comparison to the systems providing no fault-tolerance. Recent
proposals [15, 80] are examples of the systems providing fault-
tolerance. Like the front-end load balancer used in these systems,
our design requires a software module (CTA) in front of CPFs only.
CTA encapsulates the CPF(s) to ensure state consistency and avoid
fallback on out-of-sync replicas when no up-to-date CPF exits. For
the external world, CTA acts as a CPF. As CTA in our design is only
required in front of the CPFs, we see no fundamental limitations
in using our control plane design in service-based communication
architecture of 5G.
Deployability and Performance Trade-Offs: CellClone is a drop-
in replacement of the existing CPF. It requires no hardware or
software changes on the UE and BS. Software changes on the BS
and UE are only required when FlatBuffers based serialization of
Neutrino [15] is used. As a trade-off between performance and com-
pute resources, CellClone favors performance by using up to 1.7×
more resources as compared to Existing 5G, when the replication
factor is 3. However, these extra resources are only required for
the 5G network slice serving ultra-reliable and low-latency com-
munication (URLLC) [88] based applications while the rest of the
network slices in 5G can be configured to use fewer active clones
hence fewer resources.
Our Approach to Non-Determinism: The non-determinism ex-
amples in Table 1 are not comprehensive. However, all kinds of
non-determinism can be handled with our design (§4.4). A different
design approach would be to avoid non-deterministic operations
but it may (i) require changes on multiple network functions, such
as UPF and/or HSS, and (ii) may compromise security, e.g., a random
number generated at the HSS is required for security [4].
Quorum Selection: Our evaluation is based on all the active CPF
clones co-located at the same edge site. However, for fault-tolerance
and/or load balancing purposes, a quorum can be createdwith nodes
from different edge sites with an obvious trade-off of delay.

9 CONCLUSION
In this work, we demonstrate that redesigning the cellular con-
trol plane is an important step toward enabling emerging edge
applications. Our contributions are two-fold. First, we identify the
key challenges in designing a fast and fault tolerant cellular con-
trol plane. Second, we designed a new control plane, CellClone,
that masks control plane faults while providing consistent control
plane processing. Testbed experiments show CellClone plane can
significantly improve edge application performance over 5G.
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A CTA STATE CACHING AT THE CPF FOR
FAILURE RECOVERY

Lets consider an example scenario to illustrate how CTA failure is
handled in our design. Assume that the sample procedure depicted
in figure 18 is an initial attach procedure, the processing of which
contains some non-deterministic operations. Let’s suppose the state
update due to M1 (with logical clock 20) is a non-deterministic
operation (i.e., M-TMSI allocation) and the CTA fails just after
replying for M1 to the UE and before synchronizing state changes
from the fastest replica (B in this case) on A. In this case, the new
CTA can recover from the temporary state available on replicas
A and B, however, an issue is that both the replicas are out-of-
sync due to the last non-deterministic state update. However, the
information, that M-TMSI was allocated by replica B is relayed to
the user, is available on replica B (as discussed in §4.4). So the new
CTA first synchronizes replica A with the state from replica B and
after that marks replica A up-to-date

Figure 18: CTA failure recovery with the distributed state
available on the CPFs.

B ARTIFACT APPENDIX
B.1 Abstract
This section provides an overview of the artifacts used for this
paper. The artifacts include the source-code that implements our
proposed design, instructions to install dependencies, deploy the
source-code, configure the system, run experiments, and collect the
results. Using the artifacts, you should be able to reproduce all the
control plane evaluation results. The source-code of the proposed
design is in C/C++ language and can be compiled with standard
gnu compilation tool-chain.

Our experimental setup spans multiple servers. The artifacts
includes a custom framework to automate all the control plane
experiments.

B.2 Description
B.2.1 How to access. All the artifacts, including the source-code
and documentation, are available through the following sources:

• https://github.com/nsgLUMS/cellclone
• https://doi.org/10.6084/m9.figshare.21300813.v1

The archived version at https://figshare.com/ should provide a
public access for more than 10 years. Providing both the GitHub
repository and the FigShare archive in the paper allows us to main-
tain the archive and to have a citable version that reflects the state
when the artifacts were granted.

B.2.2 Hardware dependencies. Our setup requiresminimum3 Linux
machines equipped with DPDK compatible network interface cards
with at least 3 ports (§6.1). Complete detail is provided in the
README file in the main directly of the source-code.

B.2.3 Software dependencies. For a full list of dependencies, please
see README file in the main directly of the source-code. The
minimal requirement is Linux, Python and DPDK [2].

B.2.4 Data sets. This software requires no data set. All the required
data is internally generated by the software.

B.3 Installation
We have provided detailed instructions in the README file to setup
network and install the software.

B.4 Experiment workflow
• Use config.json to configure a particular experiment.
• Run run_experiments.py to execute an experiment. Experi-
ments may take a few minutes depending on the configura-
tion.

• Run do_stats.py to collect results.
• Run plot.py to plot the results.

A detailed step by step guide to run an experiment is provided
in the README file in the main directory of the source-code.

B.5 Evaluation and expected results
The READMEfile in themain directory contains a sample figure and
detailed instructions on how to configure the system to reproduce
this figure. Once this figure is reproduced, further instructions are
provided to generate other evaluation results in the paper.
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