
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 10, OCTOBER 2018 2275

Refactoring Network Functions Modules to Reduce
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Abstract— Network functions virtualization (NFV) allows
service providers to deliver new services to their customers
more quickly by adopting software-centric network functions
implementation over commercial, off-the-shelf hardwares. This
NFV-based software-centric approach cannot use dedicated
mechanisms implemented over custom built boxes to reduce
latencies and tolerate faults. We present a case study of IP
multimedia subsystem (IMS), which is the most complex NFV
instance, requires extremely low end-to-end latency (40 msec),
and demands system availability as high as five nines. Through an
empirical study, we discover that highly modular IMS network
functions implementation over virtualized platform: 1) incurs
latencies and 2) does not tolerate faults. NFV-based IMS modules
incur high latencies by creating a feedback loop among each other
while executing delay sensitive data-plane traffic. These IMS
modules are also susceptible to failure, causing the control-plane
to terminate the application session while keeping the data-plane
to forward data packets. To address these issues, we propose
to refactor network function modules. We reduce latencies by
pipelining the IMS modules, and recover failed modules by
reconfiguring their neighboring modules. We build our system
prototype of open source IMS over OpenStack platform. Our
results show that our scheme reduces latencies and failure
recovery time up to 12× and 10×, respectively, when compared
with the state-of-the-art virtualized IMS implementation.

Index Terms— Network functions virtualization, LTE, IP mul-
timedia subsystem, fault tolerance, software defined networking.

I. INTRODUCTION

TO MEET exponentially increasing service demands and
to even launch a new network service, a service provider

often requires installing a new dedicated appliance that brings
complexity of integrating and deploying it in a network.
Moreover, purpose-built appliances rapidly reach end of life
because dedicated hardwares life cycles are becoming shorter
as innovation accelerates, reducing the return on investment of
deploying new services [1]. Network Functions Virtualization
(NFV) addresses these problems by implementing network
functions (NFs) in a software that can run on general-purpose
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hardware servers [2]. NFV allows network service providers to
scale services up or down quickly to address changing service
demands while reducing capital and operational expenditures
(CAPEX and OPEX) [3], [4].

The move away from proprietary hardwares means virtual-
ized network systems cannot take advantage of special mecha-
nisms to tolerate faults and reduce packet processing latencies.
The special mechanisms in proprietary hardware include
(1) module redundancy by providing strong coupling between
software and hardware [5], [6]; and (2) performing func-
tional checks through proprietary software platforms [7], [8].
This motivates us to study how virtualized network func-
tions (VNFs) handle latencies of growing number of users
requests, and tolerate faults in the absence of vendor specific
mechanisms.

We consider Virtualized IP Multimedia Subsystem (vIMS)
as a case study of NFV based network system implementation.
There are several reasons behind our choice of vIMS as NFV
implementation use case. First, there are a variety of IMS
based applications (such as Voice over LTE (VoLTE), Video
over LTE (ViLTE), Conference Call, to name a few) used
by millions of subscribers in operational LTE networks [9].
Second, IMS based applications stipulate stringent require-
ments on both low latency and high fault tolerance. For exam-
ple, VoLTE call requires end-to-end voice packets latency to be
less than 100 msec while continuing voice call during system
faults [10]. Third, IMS procedure is well standardized by
3GPP [11] standard body restricting all IMS implementations
to follow the standard. Fourth, through open source IMS
implementation (OpenIMS [12]), we can test the working of
standardized NFs and their modules.

We prototype vIMS by implementing OpenIMS over open
source cloud platform (OpenStack [13]), and we ensure that
vIMS implementation is in accordance to the IMS standard.
Our prototype acts as a baseline vIMS implementation that
we call state-of-the-art vIMS. We conduct an empirical study
on our vIMS implementation and record the observations as
follows:

1) IMS NFs are highly modular; one NF has many func-
tional modules. During media plane processing, different
modules implemented in three different NFs interact
with each other in a loop; where a module in one NF
uses delegation model to delegate the processing of data
packets to a module in different NF, while retaining the
overall control to itself. Similarly, policies are defined
at a module in one NF, but are enforced at a module
in different NF. As a result, a loop is created between
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processor, controller and policy modules in different
NFs that require realtime packet processing behavior to
update control information and policies. For example,
a controller module requires available bandwidth, and
packets arrival rate from a processor module to adjust
voice codec [14]. This results in packet processing
latencies.

2) During media session setup, both control and data
planes create device session states and transition from
one state to the other as a call progresses. Device
states at control and data planes remain synchronized
during call life cycle. However, we discover that a
particular module failure causes device states to be
desynchronized; the control-plane terminates the call
but data-plane keeps device state as Connected. This
hanging state machine phenomenon emerges when
control-plane detects the failure and changes device
state to Morgue before terminating the control-plane
connection; whereas, the failure goes undetected at
data-plane that keeps receiving downlink data packets
(whose control-plane connection is aborted).

To address these issues, we propose to refactor IMS NFs
modules by (1) pipelining data packets processing and fetching
its control instructions, and (2) reconfiguring modules to
recover from a failure. To reduce media plane latencies, our
design predicts future packets and prefetches control instruc-
tions. Once future packets arrive, these control instructions are
used to steer media plane execution. For prediction, we use
exponential smoothing model [15] that weighs past observa-
tions using exponentially decreasing weights, i.e. recent obser-
vations are given relatively more weight in forecasting than the
older observations. Because control instructions remain same
for a range of metadata values (that represent media behavior),
our design fetches correct future control instruction even for
a small prediction error.

To improve fault tolerance, our design provides configu-
rations for each module during the system setup phase by
adding the back-up paths to their one-hop neighboring module.
At runtime, neighboring module detects a module failure and
assumes the role of failed module by loading its execution
logic as provided in the configurations, then connects with
rest of the failed module’s neighbors through a back-up link
and resumes failed operation.

We evaluate our design and gather results from our Open-
IMS [12] implementation over Openstack [13]. Our results
show that (1) our system reduces media latencies upto 12×,
and (2) resumes failed operation within 2.5 seconds, which is
10× better than current state-of-the-art vIMS design.

II. MIGRATING CARRIER GRADE NFS TO NFV

Network systems heavily rely on advanced in-network
processing for critical functions ranging from traffic manage-
ment to VoLTE service. These Network Functions (NFs) are
implemented over dedicated hardware boxes which are spread
within the network. Recently, the motivation to reduce sys-
tems’ operational and capital expenditures with exponentially
increasing traffic growth inspire building network systems
(NFs) using commodity compute/storage/network resources

while reducing (or removing) dependency on specialized plat-
forms. Migrating carrier grade boxes functionality towards
virtualized middleboxes is called Network Function Virtual-
ization, NFV. Such software only implementation of NF(s)
decoupled from hardware also lead to more agile and flexible
deployment models.

However, implementing task specific network systems over
virtualized platform incurs latencies; The time critical appli-
cations suffer the most whose latencies were previously con-
tained by dedicated box mechanisms. Latencies in NFV mainly
come from virtualization layer, lack of system support for
providing enough resources to time critical applications, ser-
vice chaining between different NFs, and more. Furthermore,
failures are common in virtualized environment [16], which
are caused by single server or node failure, misconfigured NFs,
software patch or upgrade glitches, and due to network con-
gestion or overload [17].

To address these issues, both industry and researchers
proposed very generic solutions, such as VNF placement
according to application need [18], using baremetal approach
to reduce latencies [19], adding 1:N redundancy [17] and
others. However, we argue that such generic solutions do
not guarantee application-specific QoS in terms of endured
latencies and expected system performance. We advocate to
apply domain specific knowledge in improving a particular
system and deliver application requirements. Therefore, in this
work, we focused on an NFV system by considering its
associated application needs, the interactions between different
NFs during the system operation, and system requirements
stipulated by the standard.

III. MOTIVATION OF USING VIRTUALIZED IMS
AS NFV IMPLEMENTATION CASE-STUDY

NFV is keenly followed by the telecom industry and its
proof of concept implementations are already in process [20].
Most telecom operators are considering to support their IP
Multimedia Subsystem (IMS) implementation over NFV [21].
IMS is an architectural framework for delivering IP multi-
media services, such as VoLTE, ViLTE, software as a service
(SaaS), social sites, navigation, and many more. Operators can
benefit from virtualized IMS (vIMS) implementation; where
they can quickly scale up virtualized NFs (VNFs) to support
growing demand of multimedia-rich applications and services
(e.g. VoLTE and ViLTE). These multimedia services have
stringent requirements on latency (end-to-end latency goes as
low as 40 msec [10]) and fault tolerance (operator networks
want to achieve 5 nines availability [22]). This motivates us
to study how IMS can achieve such low latency by tolerating
faults over virtualized infrastructure. We are also motivated
to use IMS as a case-study because it already has an open
source implementation (OpenIMS [12]), and its functionalities
are well documented by 3GPP specifications [11]. Lastly,
like LTE, IMS supports both control-plane and data-plane
functions. That means, the lesson learned in IMS use case
study can also be used in virtualizing LTE core.

IV. IMS BACKGROUND

IMS runs on top of LTE that provides best effort service
to the users, with no guarantee on the amount of bandwidth
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Fig. 1. IMS architecture: An overview.

a user gets for a connection and the delay experienced by
the packets. Therefore, IMS is the preferred choice of mobile
operators to support real-time multimedia services. IMS uses
Internet protocols and brings multiple media, multiple point
of access and multiple modes of communication into a single
network, enabling simultaneous voice and multimedia services
for end users [23].

IMS Architecture: IMS operations are categorized into
control-plane and data-plane operations, as shown in Fig. 1.

Control-Plane supports media sessions control through Call
Session Control Function (CSCF) NFs, and Application Server
(AS) NF. The CSCF performs all the signaling operations,
manages Session Initiation Protocol (SIP) sessions and coor-
dinates with other NFs for session control, service control and
resource allocation. It consists of two main NFs: the Proxy-
CSCF (P-CSCF) and Serving-CSCF (S-CSCF). The AS,
on the other hand, implements multimedia execution logic and
policies, and coordinates with both CSCFs and data-plane NFs.
LTE device (IMS client) first registers with LTE core network
and then initiates IMS signalling over IMS control-plane. The
P-CSCF is an access point for IMS and acts as a SIP proxy for
all the user equipments. P-CSCF simply forwards all traffic
to S-CSCF. S-CSCF is the core of the IMS and it is the
point of control within the network that enables operators to
control the entire service delivery process and all the sessions.
S-CSCF forwards the request to AS that applies service logic
in accordance to defined policy and replies back the modified
session to S-CSCF for its delivery to destination network.

Data-Plane includes Media Resource Function (MRF) that
processes, stores data and generates services for the sub-
scribers. MRF functionality is further split into two NFs
that perform its control-plane, and data-plane actions. Once
user session has been established, the user data-plane traffic
is sent to Media Resource Function Processor (MRFP) –
performing data-plane action of MRF. The MRFP connects
LTE core domain (via PDN gateway – PGW) with IMS
domain for multimedia service and converts between different
transmission and coding techniques as controlled by Media
Resource Function Controller (MRFC) – performing control-
plane action of MRF. Moreover, MRFC employs monitoring
schemes to determine policy rules in real-time.

Note that, in order to improve the readability of the paper,
we use the term MRF when discussing the data-plane func-
tionality as a whole.

IMS NFs are highly modular where different modules
handle different functionality such as execution logic, process-
ing, policy, security, session states, resource control and more.

Fig. 2. Even under the moderate call rate, the packets latencies are beyond
acceptable value. These latencies exponentially grow by adding fewer number
of more calls and potentially clog the whole data-plane.

Fig. 1 shows different modules (rectangular shaped) imple-
mented within different NFs (rounded rectangular shaped).

V. EMPIRICAL STUDY

Through an empirical study, we understand (1) how different
VNFs’ modules interaction adds latencies in media-plane
(data-plane), and (2) key module failure impacts on-going
multimedia traffic. We prototype open source vIMS imple-
mentation by making significant changes into OpenIMS [12]
platform. We develop various software modules after studying
tens of IMS standard documents [11], [24] and observe these
modules’ interaction with each other for on-going media flow.
The implementation details of our prototype is discussed
in Section VII. We use VoLTE as multimedia application,
because VoLTE is a premier IMS application widely used in
operational LTE networks worldwide [25]. Below, we describe
each finding, its impact and then provide analysis of the
finding.

A. Media-Plane Latencies Exponentially Increase
With Call Rate

We find that media-plane latencies significantly rise as we
add moderate number of simultaneous calls into the vIMS
system. In reality, LTE network operators receive hundreds
of thousands of multimedia requests (including VoLTE calls)
per second [26]. Each of these media requests has stringent
latency requirement as defined by LTE standard (refer to
Table 6.1.7: Standardized QCI characteristics in [10]). For
example, voice, video, push to talk voice, and IMS signaling
have latency bounds of 100 msec; whereas interactive gaming
and mission critical jobs have latency bounds of 50 msec
and 60 msec, respectively. For testing latency requirements,
we launched simultaneous call requests by varying call rate
from 2 calls per second to 300 calls per second. Fig. 2(left)
shows that the packets delay remain under 30 msec for first
100 calls per second. The latency doubles to 60 msec when
we add as few as 25 more simultaneous calls; and reach upto
upper bound of VoLTE call’s acceptable value (100 msec) for
only 180 calls per second. The delay increases up to 4 times of
VoLTE call’s acceptable value (400 msec) by adding 0.5 times
the existing number of calls (270 calls/sec). In our experiment,
we did not terminate the already established calls because in
reality IMS system should accept more number of calls on
top of already on-going calls. vIMS reaches its capacity to
provide seamless voice service under 15,000 active calls in
total, as shown in Fig. 2(right).

Impact: This experiment explains that state-of-the-art vIMS
design fails to meet QoS requirements on media traffic [27]
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Fig. 3. Frequent interactions between different modules in data-plane
execution.

in operational LTE network. Therefore, operators are required
to install many more NFs instances to meet current sub-
scribers demand. This will increase their capital and opera-
tional expenditures (CAPEX and OPEX) which is against the
NFV philosophy. High latencies may also cause failures, when
vIMS completely stops responding because of system overload
(by throwing too busy error) [28] and requires NFs reboot.

Analysis: Frequent loops between media plane modules
The root cause of above issues is due to frequent interactions
between different modules residing in different NFs. These
interactions form a loop and packet processing latencies soar
to the level where handling of media packets is no longer
meaningful (i.e. voice jitters with large packet delays). Even
worse, further increase in call rate cause packets congestion
at different modules and render these module non-responsive.
IMS media-plane functionality is divided among 3 NFs
(AS, MRFC and MRFP). When AS NF receives originating
call notification, it sets-up media policy and informs MRFC
to prepare network resources at MRFP. MRFC fetches media
execution script documents, located at AS and forwards it to
MRFP script execution engine.

When media (VoLTE data packets) starts arriving at MRFP,
media packets are processed and call meta data (e.g. call arrival
rate, bandwidth usage, available buffer size etc.) is generated.
This meta data is fed back to MRFC that adjusts call execution
logic (e.g. codec bit rate, codec sample size and codec interval
etc.) and informs MRFP. MRFP adjusts the number of packets
that need to be transmitted every second (i.e. PPS = (codec bit
rate) / (voice payload siz)) and the bandwidth (total packet size
* PPS). This loop between different modules of MRFC and
MRFP continues, as shown in Fig. 3b during media execution.

We find that on top of media execution loop, there exists
script fetching loop, as shown in Fig. 3a. This is mainly
because AS retains full media execution control by dynam-
ically generating XML scripts [29]. IMS employs web model
where media application behavior is defined in terms of
markup languages/scripts (e.g. VoiceXML, SCXML, CCXML,
and others)1 [30], [31]. These scripts are located on the AS and

1Voice Extensible Markup Language (VoiceXML), State Chart extensi-
ble Markup Language (SCXML), and Call Control eXtensible Markup
Language (CCXML)

Fig. 4. All calls are dropped when S-Incoming Leg Control module failure
is triggered (left). However, MRF keeps forwarding data packets to device
even though the device does not maintain any connection (right).

retrieved by the MRFC using HTTP protocol. Scripts running
on the MRFP provide media behavior notifications to AS (via
MRFC), and receive media control updates from AS. Further-
more, AS can exercise more fine-grained control of the media
behaviour by defining smaller scripts for the MRFC to execute
and requiring MRFC to retrieve further scripts from AS. These
scripts are dynamic where techniques (such as JSP, ASP and
Servlets) are used to dynamically generate script documents
and are transmitted to MRFC over HTTP protocol. In short,
the media flow and presentation state is delegated to the MRFC
and MRFP, while the AS retains overall control since scripts
are defined (and can be dynamically generated) by the AS.
This delegation model generates the loop between AS, MRFC
and MRFP for media execution.

B. Media Packets Keep Forwarded to Device Whose
Control-Plane is Aborted

Certain modules act as bridges between NFs. Failure of
these bridging modules result in control-plane termination.
However, data-plane being decoupled from control-plane stays
connected via different set of NFs. We dial originating
VoLTE calls and slowly increase the call rate (adding 1 call
per second). We then trigger S-Incoming Leg Control module
(a bridging module between S-CSCF and the AS) failure at
25th second (i.e. on setting up 25th call), as shown in Fig. 4.
On module failure, P-CSCF does not accept any new call
and makes 5 retries (with retry interval of 1 second) to
receive a response from S-CSCF. On 5th unsuccessful retry,
P-CSCF drops all calls by sending SIP BYE message to
originating device (as shown in Fig. 4(left)). However, this
SIP BYE message from P-CSCF was not forwarded to termi-
nating devices because of the failure of only bridging module
(S-Incoming Leg Control) between originating and terminating
devices. Also, MRF does not receive this call disconnect
message from AS (via failed S-Incoming Leg Control module)
and maintains data-plane connection with LTE PGW.

Terminating devices keep generating UL media packets
that are forwarded to MRF through data-plane. Fig. 4(right)
shows number of media packets received at different time
interval. As shown, MRF forwards the terminating devices
packets towards originating device, but does not receive any
packet from originating device. In short, terminating devices
keep the VoLTE call intact and experience speech mute
issue, where they do not receive a response from originating
device.

Impact: The impact of S-Incoming Leg Control module
failure is quite severe, because media plane packets from
terminating devices towards originating device keep flowing
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Fig. 5. When S-Incoming Leg Control module fails, the control-plane communication between originating and terminating device breaks. The originating
device connection is aborted by P-CSCF (where P-CSCF state transitions to Mortal state). However, this abort control signal does not reach to terminating
device. As a result, terminating device keeps forwarding media packets to media-plane (MRF).

and system does not have any mechanism (e.g. timers) to
fully terminate the media connections. During this failure,
IMS relies on human intervention to stop the call (expecting
the called party hangs-up the call after speech mute issue).

We find that the impact of this issue can be reduced
(upto 30 seconds) when originating and terminating devices
are located behind the NAT. In this case, STUN (Session
Traversal Utilities for NAT) Binding Requests are used by
these devices as a keep-alive mechanism to maintain NAT
bindings for signalling and media flows [32]. If a device does
not receive a STUN reply (within 30 seconds), it considers the
flow and any associated security associations invalid and per-
forms the initial registration procedures. However, operational
LTE network operators are using IPv6 and do not install NAT
in their network [33]; as a result, our finding has greater impact
for operational IMS systems. Furthermore, in accordance to
3GPP requirements [32], device does not implement keep-
alive mechanism when a NAT is not present (i.e. given battery
considerations for wireless devices).

Analysis: Control-plane termination does not stop data-
plane flow The root cause of above issue is the hanging state
machine at MRF. On S-Incoming Leg Control module failure,
P-CSCF updates device state to Mortal but MRF stays in
Connected state.

We now explain how dialogue states are created at control
and data planes and how these states transition that leads to
hanging state at data-plane on module failure. Once the device
is registered, it initiates multimedia request (i.e. originating
VoLTE call) by sending SIP INVITE request towards P-CSCF
(via LTE PGW). The P-CSCF creates a dialogue for requested
multimedia service with a Start state (shown in Fig. 5a) and
forwards the request to S-CSCF by transitioning to Preparative
state. Through dialogue, P-CSCF keeps track that which
SIP message is for which device and for which multimedia
session. On receiving the INVITE message from P-CSCF,
S-CSCF creates device session and states for incoming leg
at its S-Incoming Leg Control module and then forwards
the INVITE request to AS-Incoming Leg Control module.
AS then processes the INVITE request and prepares MRF
to handle imminent multimedia traffic. MRF also creates
a dialogue for requested multimedia service, with a Start
state (shown in Fig. 5c), and prepares required multimedia

resources for media application. Note that both P-CSCF and
MRF maintain dialogue states to keep track of user states
in control-plane and data-plane, respectively. MRF transitions
to Created state by sending an acknowledgement regarding
data-plane dialogue setup to AS. AS-Outgoing Leg Control
module modifies the INVITE request and forwards the request
to S-Outgoing Leg Control module of S-CSCF, which then
forwards it to terminating device and waits for a provisional
response from terminating device (such as 180 RINGING).
Once S-CSCF receives the provisional response, it forwards
it to MRF (via AS) and P-CSCF. Both P-CSCF and MRF
move to Early and Progressing states, respectively. Similarly,
P-CSCF and MRF transition to Moratorium and Connected
states, respectively, on receiving successful multimedia setup
response (such as 200 OK) from terminating device.

Connected state at MRF means that control-plane connec-
tion has been established between originating and terminating
devices and multimedia traffic can flow at any time instance.
However, P-CSCF requires an acknowledgement from device
to transition from Moratorium state (a substate of the Con-
firmed state) to Established state.

S-Incoming Leg Control module failure coupled with device
failure at this point (when P-CSCF has not yet transitioned
to Established state) results into hanging state machine
scenario 1. Because of failure, P-CSCF is not able to receive an
acknowledgement from device and transitions to Mortal state
by sending call clear (SIP BYE) message towards S-CSCF.
However, MRF does not receive the call clear message from
S-CSCF via AS and does not terminate the data-plane dia-
logue. We assume that there are no device failures and
originating and terminating devices are successful to establish
multimedia connection. At later stage, S-Incoming Leg Control
module failure happens that results into hanging state machine
scenario 2. On detecting failure, P-CSCF first tries to recon-
nect by sending Reconnect control message towards S-CSCF,
where S-CSCF tries to forward the message to S-Incoming
Leg Control module for message delivery to AS. Meanwhile,
P-CSCF times-out and declares S-CSCF to be busy by gener-
ating 600 BUSY EVERYWHERE message code, as shown
in Fig. 6. P-CSCF then acts as a User Agent (UA) and
generates SIP BYE message towards originating device and
S-CSCF, and transitions into Mortal state. When originating
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Fig. 6. Wireshark logs at P-CSCF: P-CSCF tries to connect to S-CSCF and
times out because S-CSCF is unable to forward the request to AS. P-CSCF
updates S-CSCF status as busy and sends a BYE message to device by acting
as an user agent (UA). Thereafter, any modification to the dialogue is not
allowed.

device receives SIP BYE message, it terminates both control
and data plane connections; whereas S-CSCF tries to forward
SIP BYE to AS so that the ongoing multimedia connection
with the terminating device and MRF be stopped. S-CSCF
drops the packet because it could not forward it to AS due to
constant S-Incoming Leg Control module failure. As a result,
terminating device does not receive SIP BYE message and
keeps its control and data planes sessions. When terminating
device generates its media packets, it then forwards them
to MRF. MRF finds originating device dialogue state as
Connected and forwards the received data packets to PGW.
However, these packets are dropped at PGW because PGW
cannot reach the originating device. Note that S-Incoming
Leg Control module failure goes undetected by AS because
S-CSCF replies layer 3 keep-alive message to AS NF [34].

C. Discussion

We discuss how latencies are controlled and fault tolerance
is provided in current dedicated boxes, and why virtualization
platforms cannot match the performance of carrier grade
solutions.

Purpose-built hardware platforms have been developed
which can tolerate faults and reduce latencies. They continue
to provide the required functioning despite occasional internal
components and modules failures, either transient or perma-
nent. Examples of hardware platforms are Ericsson’s Blade
Systems (EBS) [5], Alcatel-Lucent’s Element Management
System (EMS) [35], and Huawaei’s ATCA [36] that employ
internal redundant hardware modules and provide NF avail-
ability even during failures and maintenance at any time
without disturbing traffic. At software side, NF equipment
vendors provide strong coupling between their software and
hardware. Software fault tolerance is achieved by software
design that ensures redundancy, both for error detection and
error recovery. As the system operates, functional checks
are made on the acceptability of the results generated by
each piece of software component. Software platforms include
Ericsson’s ERLANG [5], Alcatel-Lucent’s NVP [8], and
Huawaei’s Fusion [37] that use various software techniques for
scalable real-time systems with requirements on concurrency,
distribution and fault tolerance.

On the other hand, vIMS is implemented over cloud plat-
forms (such as OpenStack [13]), and relies on cloud platform’s
recovery procedure for fault tolerance that uses heart-beat
mechanism to detect failures. These cloud systems can only
detect fail-stop failures at NF level, and not at the module-level
granularity. Moreover, these system takes tens of seconds to
reallocate a NF [38].

Fig. 7. Design overview.

VI. DESIGN

We put forward two design goals: (1) reduce media latency,
and (2) improve system fault tolerance. At high level, we refac-
tor NFs modules by (1) pipelining media plane processing
and media control commands, and (2) quickly isolate faulty
module by reconfiguring its neighboring modules. Fig. 7 gives
an overview of our design. To reduce media plane latencies,
Media Update module receives media meta-data from Media
Processor module and predicts future meta-data values. It then
requests control information for these predicted meta-data
values from MRFC. In other words, MRFC prefetches control
information from MRFP for future purpose and steers Media
Processor accordingly. This prefetching of control informa-
tion and processing of media packets are done in parallel,
unlike serially in the state-of-the art vIMS implementation.
This is achieved because MRFC can likely predict future
media behavior as the media processing conditions change.
Similarly, MRFC prefetches media execution scripts from AS
by predicting media execution conditions.

Our design reconfigures each module by adding back-up
path with each of one-hop neighbouring module. As shown
in Fig. 7, Session Controller module at S-CSCF adds a back-
up link to its one-hop neighboring module (Incoming Leg
Control module) at AS. When Incoming Leg Control module at
S-CSCF fails, then Session Controller assumes the role of
failed Incoming Leg Control module and connects with Incom-
ing Leg Control module of AS through back-up link. Session
Controller loads failed module’s execution logic and device
session states upto to saved check-point. It then replays some
of the already executed commands to resume failed operation.

A. Pipelining Control Instructions With Media Plane
Execution

MRFP processes media packets based on instructions it
receives from MRFC and AS in real time. Ideally, these
latencies do not go beyond few μseconds, but they significantly
increase under high call rate and fine-grained script execution
control. To address this issue, we propose pipelining media
processing and its control instructions request. This allows
us to convert serial operations of processing of media pack-
ets at MRFP and fetching control instructions from MFRC
into parallel operations. We achieve this by pipelining next
control instructions for future media packets while processing
received media packets. The control instructions are provided
based on media behavior which can be determined through
media metadata. When MRFP processes the packets, it also
calculates the metadata (e.g. voice payload size, packets arrival
rate or packets per second, availble and consumed bandwidths
and more) for these packets. To pipeline control instructions,
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we are required to predict future metadata generated by future
media packets and then prefetching control instructions for
these packets. We use a simple prediction algorithm, where
we first calculate the deviation of received metadata value
from its previous value and add this deviation into current
value, as explained by algorithm 1. These new metadata values
become our predicted medtadata for which we request control
instructions from MRFC. Because control instructions remain
same for a range of metadata values, our prediction does not
prefetch wrong control instructions for most of the cases. For
example, voice codec G.711 is applied for all packets with
voice payload size in between 160 to 240 Bytes, and jitter rate
in the range of 30 to 50 packets per seconds [14]. In other
words voice processing instructions have built-in tolerance
range that we exploit in our favour. However, as actual
metadata comes closer to tolerance range, our algorithm may
prefetch wrong control instruction by predicting wrong meta-
data. We address this issue by predicting batch of metadata
that also optimizes our prefetching algorithm.

Algorithm 1 Prefetching Algorithm With/Without Optimiza-
tion
1: procedure PREFETCHING

2: Predict:
3: metadata← receive metadata from Media Processor
4: εi ← calculate prediction error from receivedmetadata
5: for all metadata values m do
6: Δm = m − mprevious

7: mnew = Δm + m + εi

8: metadatapredicted + = mnew

9: end for
10: Predict with Optimization:
11: metadatah ← historical values of metadata
12: αi ← smoothing constant, where 0 < α≤1
13: for all metadatah values m do
14: mnew,t = αmprevious,t−1 + (1 − α)mnew,t−1

15: metadatapredicted + = mnew

16: end for
17: Send(metadatapredicted)
18: ReceiveFrom()← receive control info from MRFC
19: Update(Control) � UpdateMediaProcessor
20: end procedure

1) Optimization Using Batch Prefetching: Prefetching
future control instruction, although, helps to run packet
processing in parallel; it does not reduce the control instruc-
tion fetching loop. We propose generating batch of metadata
by taking historical metadata measurements into account,
and then requesting their control instruction. To achieve
this, we use exponential smoothing model [15], described
in algorithm 1, to forecast series of future metadata values.
This model weighs past observations using exponentially
decreasing weights, i.e. recent observations are given rela-
tively more weight in forecasting than the older observations.
Using exponential smoothing model, we generate a batch of
predicted metadata. This batch contains 5 (also configurable)
sets of metadata, where each metadata set contains several
metadata values. Then this batch is forwarded to MRFC

and respective control instructions are received. Similarly,
MRFC provides script documents against predicted metadata
sets that it fetches from AS. Thereafter, when Media Update
module receives actual metadata values from Media Processor
module, it immediately replies respective control instruction
(as closest as possible) from prefetched control instructions
set. Media Update module also observes the deviation of
predicted and actual metadata values and requests or delays
prefetching future control instructions by generating new batch
of metadata. This procedure helps in reducing request/reply
loop between MRFC and MRFP.

2) Complexity: The algorithm 1 contains two parts:
(1) In the first part, the prediction of metadata value,
metadatapredicted, is done by iterating through all metadata
values m. This iteration is performed once which is linear
with complexity of O(m). (2) The prediction with optimization
part considers historical values, metadatah, into account and
iterates through all metadata values m. This iteration is also
done once and it is linear in time. Because, either part 1 or
part 2 is executed, thus, the time complexity of the algorithm
is linear in m.

Algorithm 2 Module Reconfiguration Algorithm
1: procedure RECOVERY PROCEDURE

2: Start:
3: SIP ← ReceiveFrom()
4: Start timer A
5: SendTo (SIP)
6: if Timer A expires And SendTo(SIP) is Failed then
7: goto FastRetry()
8: else if SendTo(SIP) is Success then
9: Break

10: end if
11: FastRetry():
12: Start timer B
13: SendTo (SIP)
14: if Timer B expires And SendTo(SIP) is Failed then
15: goto Failover()
16: else if SendTo(SIP) is Success then
17: Break
18: end if
19: Failover():
20: Announce(): failure to failed module’s neighbors
21: Reconfigure(): links with failed module’s neighbors
22: goto Start()
23: end procedure

B. Fault Isolation and Module Reconfiguration

At the heart of failure recovery in our design is fault detec-
tion, its isolation and module reconfiguration. We show failure
recovery procedure through finite state machine diagram,
as shown in Fig. 8, and capture the steps through algorithm 2.
In the following, we explain failure detection and recovery
procedure through SIP INVITE message example. However,
note that our design can detect and recover from failure when
failure occurs during call setup phase, (such as during INVITE,
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Fig. 8. Failure detection and recovery procedure through state transition
diagram.

RINGING, TRYING SIP message failure), or after call setup
phase (such as NOTIFY, UPDATE, CANCEL SIP message
failure).

1) Failure Detection Procedure: When Session Controller
receives the INVITE request from P-CSCF, it enters into SIP
Received state and starts the timer A, as shown in Fig. 8.
Timer A is configurable timer, which is set to be 1 second in
our implementation. Thereafter, INVITE message is forwarded
to the next hop, i.e. towards S-Incoming Leg Control module,
and Session Controller moves its state to SIP Forwarded sate.
If S-Incoming Leg Control module does not reply to SIP
INVITE message and Timer A expires, then Session Controller
module enters into fast-retransmit stage – which is failure
detection stage. The rationale of fast-retransmit is to quickly
recover from failure by reducing the retry interval. Session
Controller module starts Timer B, and resends SIP INVITE
message after moving to Fast Retry state. In Fast Retry,
SIP INVITE message is resent at an interval of 200 msec
until Timer B expires, which is set to be 1 second in our
implementation. In other words, we propose 5 retries of the
failed SIP message. Assume, S-Incoming Leg Control still does
not reply to SIP request; as a result Timer B expires and
S-Incoming Leg Control is declared to be failed.

We should also highlight the rationale of not using keep-
alive mechanism to detect the failure. First, such mechanism
can burden internal NFs modules by unnecessarily pinging
all neighboring modules. Second, IMS system capable of
handling hundreds of thousands of subscribers voice requests
per day [26] is processing at least tens of SIP messages
per seconds. These SIP messages are enough to detect module
failure. Third, even though the failure is not detected for a
longer period, it will not have any impact on media plane
execution and let users exchange media packets even during
failures.

2) Failover Procedure: After detecting failure, we per-
form fail-over procedure when Session Controller module
declares S-Incoming Leg Control module out-of-service and
takes charge of non-responding module. When S-Incoming Leg
Control does not respond and triggers Timer B expiration,
we first deactivate the link between Session Controller and
S-Incoming Leg Control. Then Session Controller module
loads the failed module’s executable through preloaded con-
figurations and configures it by activating the link between
itself and newly loaded module (acting as S-Incoming Leg
Control). In other words, Session Controller connects with

S-Incoming Leg Control through a local loop. Next,
it announces module failure to failed module’s neighbors
via backup link and declares itself being in-service module
serving the failed module’s execution. The recipient neigh-
boring modules update their routing path and connects to
Session Controller. Once the connection is setup, then Session
Controller module replays the failed messages (i.e. INVITE
SIP message in our example) at newly setup module and
resumes the control-plane operation.

To proceed with message replay and resume the service,
in-service module should have access to the session states
of the failed module. However, such session states are also
lost during module failure. To address this, we exploit the
fact that both Session Controller and S-Incoming Leg Con-
trol modules communicate in a feedback loop of request
and response. The requester can always know the session
states at responder when it receives the reply. For example,
device initiates call request by sending INVITE SIP message
which ultimately reaches at S-Incoming Leg Control module
of S-CSCF which then forwards it to AS-Incoming Leg Control
module of AS. On receiving SIP message, AS creates device
session that includes user identities, charging function address,
and device authentication information etc.; and modifies the
INVITE SIP message and then sends the modified message
to S-CSCF. On receiving modified SIP INVITE message,
S-CSCF modules store updated session along with checkpoint.
Now assume, the failure occurred during next SIP mes-
sage transmission (i.e PROGRESSING). On this failure, the
in-service module (which takes charge of failed module) replay
the SIP messages starting from stored checkpoint. That is
replaying all the SIP message upto the checkpoint over newly
launched module (residing locally).

3) When a Timeout is Not a Failure: It is possible that
proposed, but configurable, timeout value does not represent
actual module failure. Such rare case occurs when the link
between two module is severely congested or S-Incoming Leg
Control module goes through random failure Â- not impacting
the functionality of S-Incoming Leg Control. We still define
such case as a failure that impacts user Quality of Service
(QoS), and performs failover procedure. Indeed, such failover
procedure helps reducing link congestion. This is because
during failover procedure links (interfaces) between modules
are reconfigured (changed) and congested links are removed
from execution path.

4) Complexity: The algorithm 2 contains three parts: (1)
check for failure, (2) if failure happens then do fast retry,
(3) if failure persists then start failover. As a worst case
scenario, the failover procedure kicks-in that re-configures the
interfaces. To reconfigure all interfaces, the algorithm needs
to iterate through all interfaces / links. Hence, the complexity
of algorithm 2 is O(n), where n represents the number of
interfaces to be re-configured.

VII. IMPLEMENTATION

We use open source IMS platform (OpenIMS [12]) and open
source cloud operating system (OpenStack [13]) to implement
the functionalities of IMS protocol and NFV, respectively.
OpenIMS provides basic implementation of IMS NFs and is
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deployed over OpenStack platform. OpenStack provides full
flexibility on how IMS NFs are managed on cloud platform by
providing abstraction of common hardware resources through
virtualization and meets compute, networking and storage
demands of different IMS applications. We spent significant
efforts to modify source code in both platforms to suite our
needs.

A. State-of-the-Art Implementation of IMS

OpenIMS has coupled all IMS NFs by implementing them
over single virtual machine (e.g. VMware [39]) that provides
optimal performance when hundreds of users are accessing
IMS network at the same time. For NFV deployment, we first
decouple IMS NFs into separate VMs. Then these VMs are
bridged through virtual network interface. These stand-alone
VMs are deployed over OpenStack to achieve state-of-the-art
vIMS implementation. We also provide 1:1 redundant copy
of IMS NFs to achieve minimum industry requirement for
NFV [40], [41]. We use default timers as specified by IMS and
OpenStack documents [38], [42]. Our system configurations
are based on the guidelines and parameters provided by
3GPP [42], OpenStack [38], and CISCO’s IMS [43]. We con-
sider this implementation as state-of-the-art vIMS with which
we compare our design.

B. Implementation of Proposed vIMS

We exploits OpenIMS modular structure and adopt its
implementation to our needs. We describe our efforts as below:

1) Defining Modules: OpenIMS provides basic IMS imple-
mentation where it does not implement all of the modules
as defined by 3GPP specification [24]. We modify Open-
IMS source code to add many more modules (such as
breaking incoming and outgoing connection through Incom-
ing/Outgoing Session Control Leg modules). We achieve tran-
sition between these modules when one functional module
calls other functional module in a chain of SIP messages.

2) Pipelining Control Instructions With Media Plane
Processing: To support pipelining, we first break the depen-
dency between Media Processor and Media Update modules
and setup two interfaces among them. Media Processor uses
first interface to send metadata towards Media Update, and
receives control instructions over second interface. It imple-
ments callback function to receive control instructions from
Media Update module.

Irrespective of packet processing job, Media Update module
requests control instructions for a batch of predicted metadata
over a fixed time interval (implemented as 2 seconds), and
generates an event of new control instructions only when the
predicted metadata causes different sets of control instruction.
Media Processor receives new control instructions through a
callback function.

3) Failure Detection Procedure: We detect failure by imple-
menting finite state machine (FSM) (as shown in Fig. 8).
In FSM implementation an operation must start from an initial
state and transit to another accepted state. To achieve this,
we create FSM transition table that transits from a given state
to a new state when either the response is generated for a

request (i.e. no failure case) or its guard timer has expired
(i.e. failure happens). By doing so, the proposed FSM only
executes on necessary functional module.

4) Fail-Over Procedure: To successfully execute fail-over
procedure, we are required to immediately resume IMS opera-
tion by (1) isolating faulty module, and (2) performing failover
by reconfiguring interfaces. To achieve these goals, we keep
track of on-going device session before fault using a hash
table to store/retrieve user’s session information. When failure
occurs, the FSM transitions to Failover state. In Failover state,
in-service module (that detected failure) retrieves last stored
device session information from hash table. Then in-service
module updates the network configurations at incoming and
outgoing interfaces and contacts neighboring modules of failed
module using on-going request identities. Thereafter, the in-
service module takes charge of failed module’s operations and
resumes the IMS service.

VIII. EVALUATION

We evaluate how our proposed design reduce latencies
and improve vIMS fault tolerance. The state-of-the art vIMS
described in Section VII-A serves as the baseline of our
experiment with which we compare our design. We run
our tests on a local network of servers with Intel Xeon(R)
ES-2420 V2 processor at 2.20GHZ x 12, 16M Cache size,
and 16GB memory. For each VM, we use Ubuntu Server
14.04.3 LTS with the Open IMS Core. Each IMS NF is
implemented over a separate server to make cluser of VMs
in OpenStack.

We now present experimental results showing how our
proposed vIMS reduce latencies and improve fault tolerance.

A. Reducing Latencies

To evaluate how our proposed design reduces media-plane
latencies compared to state-of-the-art vIMS design, we launch
a number of voice calls and inject voice packets over estab-
lished media connection between caller and callee. These calls
are launched in systematic way, where our script increases the
call rate by adding one call every second. In the first second,
2 calls are dialed (2 calls per second), then 3 calls per second
and so on, upto 300 calls per second. This experiment is in-
accordance to the experiment we show in Empirical Study
section (Section V-A).

In state-of-the-art design, as the call rate increases the
media-plane latencies start increasing, as shown in Fig. 9.
Only 60% of the traffic remains below 100 msec (upper bound
of voice QoS requirement), where rest of 40% traffic incurs
as high latency as 600 msec (6 times the upper bound of
voice QoS requirement). The main reason behind this was
the frequent interaction between Media Processor and Media
Control modules. Media control module exercises fine-grained
control on how voice packets are processed. It also interacts
with Media Policy module to fetch call execution XML, using
which Media Processor processes the packets.

Fig. 9 shows that proposed design significantly reduces
media-plane latencies. These latencies remain under 50 msec
even when MRF is processing around 40,000 simultaneous
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Fig. 9. Comparing state-of-the-art vIMS media plane latencies with proposed
vIMS design under increasing call rate. Proposed design reduces latencies by
pipelining media plane execution with control instructions. Loops between
control and media plane incurs latencies in current state-of-the-art vIMS
implementation.

Fig. 10. (a) Increasing call rate means there are always more number of
SIP messages flowing through IMS NFs modules. This helps to quickly start
failure detection procedure in case next hop does not respond to SIP message
request; (b) Proposed design takes a couple of seconds to recover from the
failure, i.e. time taken in detecting failure and reconfiguring the modules by
isolating failed module. Behind NAT vIMS NFs and OpenStack use keep-
alive mechanism to detect the failure. IMS without OpenStack implementatio
requires human intervention to hangup media plane.

calls (when all active calls add-up, starting from 2 calls/sec
to 300 calls/sec). This significant improvement was achieved
because Media Processor module does not fetch control
instructions and simply processes the packets as soon as voice
packets arrive. The control instructions are sent to Media
Processor over a separate interface, without meddling media
packets execution. Media Processor module keeps only one
copy of control instructions and updates it as soon as it receives
new control instructions (calculated based on packet metadata
prediction).

B. Improving Fault Tolerance

Our design improves fault tolerance by (1) quickly detecting
the failure, and (2) running failover procedure after isolating
faulty module. In our experiment, we trigger S-Incoming
Leg Control module failure during control-plane operation
(i.e when call is being established) and let our system detect
the failure and perform failover procedure.

1) How Quickly Failure Detection Mechanism Triggers:
In our design, we are not using keep-alive mechanism to
detect the failure. Therefore, we are interested to observe
how quickly the failure detection mechanism starts after the
failure has triggered. We argue that fault tolerance is only
important for running system, i.e. when control-plane and
data-plane messages are flowing through the system. Faults
in idle systems do not have any impact on user applications.
Therefore, we are interested to know how quickly failure is
detected under control-plane operation. Fig. 10a shows that
failure detection mechanism triggering time sharply drops
from 6 msec to 1 msec when the call rate increases from 2 calls

per seconds to just 7 calls per second. This is mainly because
a call request triggers at least 4 SIP messages (i.e. INVITE,
PROGRESSING, RINGING, and 200OK) that arrive within
the call establishment time (on average 26 msec). This means
roughly every 6 msec, one SIP message is processed at IMS
– that is also the gap between failure occurrence time and
start of failure detection procedure time. However, this gap
significantly reduces to 1 msec as soon as fewer than 10 calls
are added to the system. In other words, we can say that
our design is efficient in triggering failure detection procedure
which is almost real time.

2) Failure Detection: Failure detection procedure starts as
soon as failure detection mechanism triggers, i.e. SIP message
is received at IMS NF module that transitions to SIP Received
state (refer Fig. 8). Failure detection in our proposed IMS,
Behind NAT IMS (that uses Session Traversal Utilities for
NAT (STUN) protocol [44]), and OpenStack implementa-
tions is based on timers. In our proposed design, failure is
detected when both timers, Timer A and Timer B, expire
after 2 seconds. Behind NAT IMS implementation declares
failure after default value of 30 seconds, whereas OpenStack
implementation takes 16 seconds at minimum to detect the
failure [45]. Note that, OpenStack can only detect the failure
of those modules that connect two NFs and cannot detect
internal modules failure. This is because OpenStack monitors
the working of different NFs through heart-beat mechanism
and does not monitor every individual module.

3) Failover: Once the failure is detected, the failover proce-
dure starts. Fig. 10b shows how much time different systems
take to get back to service. Our proposed design simply
reconfigures modules and loads the faild module’s executable,
and takes only 500 msec to recover from failure after failure
detection (that takes 2 seconds). However, both Behind NAT
and OpenStack take roughly 10 more seconds after failure
detection (8 seconds to prepare backup NF and restores the
service, and 2 seconds to register device and establish call).

4) System Load: We also tested failure detection and recov-
ery during IMS SIP signalling load in our design, as shown
in Fig. 11. Increasing call rate generates increasing number
of SIP messages, loading IMS towards its capacity. However,
the failure detection and recovery delays upto few seconds
on peak call rate which is acceptable because the system
is going to reach its capacity anyway. This delay mainly
comes from thread contention for system resources where
triggering of failure detection timer (Timer B) is slightly
delayed, and overloaded nighboring modules also respond late
during failover procedure.

C. Discussion

In operational network, both IMS NFs and LTE NFs report
total number of bytes they have processed to Policy and
Charging (PCRF) NF. Then PCRF applies operator specific
algorithm that takes total number of bytes processed at
LTE and IMS as inputs in order to calculate subscriber’s
billing record. We discover that discussed failure triggers
discrepancies under two different scenarios at charging system
(i.e. PCRF). In first scenario, originating device can suc-
cessfully transmit its UL media packets towards terminating
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Fig. 11. Failure detection and failover time during system load. As the
call rate increases, more number of SIP messages traverse through IMS NFs
modules. This reflects a scenario of SIP signalling processing load on different
modules. However, failure detection and failover time slightly increases during
SIP signalling load.

Fig. 12. (a) Step by step procedure describing NFs traversal when originating
device initiates call to terminating device. In case of discussed failure,
originating device will be charged even if it does not receive any packet
from terminating device (speech mute issue). (b) IMS failure causes charging
report discrepancies at PCRF NF. IMS reports number of bytes it processed,
whereas PGW does not report any charging info because it has dropped all
the packets. Our design eliminates such charging discrepancies.

device’s MRF (from steps 1 to 5 in Fig. 12a). For these
UL data packets the subscriber is charged by the PCRF when
both PGW (step 2) and MRF (step 4) correctly report charging
records to PCRF. However, originating device never receives
any DL media packets and is billed even during speech mute
issue.

In the second scenario, MRF at terminating device network
processes media packets and reports charging record to its
PCRF (step 6). It forwards media packets to PGW that
drops the packets because the user has de-registered from the
network after failure. Therefore the PGW does not initiate any
charging report to PCRF NF. This issue can potentially results
into user overcharging because PCRF has processed charging
record for those media packets that terminating device have
never received. We show this in Fig. 12b where MRF in-
state-of-the-art IMS implementation (i.e. in baseline IMS)
charges all DL packets but PGW does not charge any packet.
This results into potential charging discrepancies at PCRF.
In contrast, our design does not cause any discrepancy as it
quickly recovers from failure.

IX. RELATED WORK

We compare our work against recent efforts on NFV, vIMS
and middle boxes’ fault tolerance space.

A. NFV

Reference [46] provides general purpose NFV platform.
References [47] and [48] make use of software and hardware

choices to meet specific service demands. References [49]
and [50] discuss NFV integration in mobile network. But
these works do not discuss how NFV can provide same
level of latency and fault tolerance as that of original car-
rier grade solutions. References [51]–[53] discuss algorith-
mic approaches to solve network slicing problem. Authors
propose solutions for choosing optimal number of vir-
tual instances to meet the requirements of mobile traffic.
References [54] and [55] solve NF placement problem for
5G networks. In contrast to NF slicing and NF placement
works, this paper addresses the reliability issues in NFV.

B. vIMS

Our work [56] and [57] discuss fault tolerance issues
in vIMS. Reference [56] shows that highly modular 3GPP
standardized vIMS network functions incur latencies and are
susceptible to failures. To address these issues, we let IMS
modules to reconfigure in real time. Reference [57] proposes
modular redundancy design to address fail stop failure. In con-
trast, this paper addresses fault tolerance and low latency
issues in NFV by providing vIMS as a use case. Reference [58]
provides dynamic resource allocation algorithm for vIMS,
[58] discusses merits of deployment strategies of vIMS.
Reference [59] enhances vIMS features for M2M. But these
efforts do not discuss latency and fault tolerance aspects
in vIMS.

C. Fault Tolerance

References [17] and [60] propose logging NF states during
normal operations and reconstructing them after a failure.
Their approaches cannot address real-time and transitory NF
sessions recovery. References [46], [61], and [62] discuss fault
tolerance in non-IMS (SIP based) voice over IP applications.
Reference [63] discusses general load balancing strategies in
vIMS and does not discuss vIMS working during faults.

D. Latency

References [64] and [65] imply dynamically schedul-
ing schemes to meet changing traffic demands in NFV.
References [66] and [67] propose mobile edge computing
designs to reduce latencies. Reference [68] proposes trading
off latency with other performance metrics. All of above
approaches fail to reduce system latencies which come from
virtualizing system and its components interactions.

X. CONCLUSION AND FUTURE WORK

Through IMS case study, we show that highly modular
virtualized system design incurs latencies when different NFs
modules interact with each other over a chain of operations.
Also, such design, relying on cloud platform’s failure detection
mechanisms, does not tolerate module’s faults. This results
downlink data-plane operations to carry-on, even though
device control-plane has been terminated. Our design, refactors
NFs modules and reduces latencies by pipelining control and
processing operations. It also reconfigures modules to tolerate
faults by first isolating faulty module and then resuming the
failed operation.
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From this work, we gain deep system insights and identify
other research issues – to be discussed in future work. Few of
them include (1) multiple modules failure, as well as complete
NF failure cases, (2) improving prediction with high variance
of media metadata (i.e. device mobility and its presence in low
radio signal strength areas), and (3) studying security issues
when some modules may skip important security modules
during failure.
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