
A Systematic Way to LTE Testing
Muhammad Taqi Raza

Computer Science Department

University of California, Los Angeles

taqi@cs.ucla.edu

Songwu Lu

Computer Science Department

University of California, Los Angeles

slu@cs.ucla.edu

ABSTRACT
LTE test cases are standardized by 3GPP. They must be exe-

cuted on every LTE-capable device model before commercial

release. In this work, we examine the LTE testing practices

in terms of completeness and efficiency. We discover that the

standardized tests are incomplete in that a number of test

cases related to multiple protocol interactions are missing.

Our analysis also shows that, the isolated treatment of test

cases, but not from the system perspective, incurs repetitive

executions of test operations, thus resulting in testing inef-

ficiencies. We thus make a case for a paradigm shift from

ad hoc testing to a methodical approach to LTE testing. We

follow a few guidelines from the LTE standards and propose

an algorithmic approach to systematic testing. In the process,

we address various challenges, provide complete list of test

cases, and present the related algorithms. Our evaluation

shows that, by eliminating repetitive operations, our new

scheme reduces up to 70% of LTE testing steps. We also find

87 new, yet valid test cases that are not defined by the LTE

standards.

ACM Reference format:
Muhammad Taqi Raza and Songwu Lu. 2019. A Systematic Way

to LTE Testing. In Proceedings of The 25th Annual International
Conference on Mobile Computing and Networking, Los Cabos, Mexico,
October 21–25, 2019 (MobiCom ’19), 15 pages.
https://doi.org/10.1145/3300061.3300134

1 INTRODUCTION
The 4G LTE conformance tests ensure that the device and the

network comply to established procedures for their control-

and data-plane functionalities. These test cases are standard-

ized by 3GPP. They are to validate the device implementation

by different vendors to conform to LTE standard specifica-

tions. Despite its importance, LTE testing remains largely

unaddressed by the research community.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6169-9/19/10. . . $15.00

https://doi.org/10.1145/3300061.3300134

In this paper, we look into LTE testing in terms of effi-

ciency and completeness. Our study yields two findings. First,

the current conformance testing focuses on single-protocol

test cases, but largely ignores interactions among protocols.

This leads to incomplete LTE testing. Second, the execution

of each test case is isolated from others, resulting in repetitive

operations across multiple test cases and test inefficiency.

To address both issues, we take an algorithmic view on

LTE testing. We seek to achieve three goals. One is to em-

brace multi-protocol interactions in the testing design to

ensure completeness. The second is to treat all test cases in

a coherent framework, and eliminate redundant test opera-

tions among these cases to improve efficiency. We further

seek to propose new algorithms to facilitate LTE testing.

To ensure test completeness, we formulate the problem

of finding test cases on multiple protocol interactions. The

key idea is to leverage the message exchanges between the

device and the network for the LTE protocols. Note that the

device and the network exchange a few messages when exe-

cuting a test case. The device consequently traverses states

of one or more LTE protocol finite-state machines (FSMs). By

examining the output messages of the device, we can infer

whether the device has properly traversed the corresponding

states of FSMs. This premise greatly reduces our effort to

generate test cases. Each test case is thus represented as an

output message combinations that the device can generate.

To provide a complete list of test cases, we are required to

generate all possible combinations of these output messages.

For n output messages, there are 2
n
possible test cases, which

are practically infeasible to analyze. Consequently, we seek

to find all those output message combinations that the device

will never produce, which maps into a problem of finding all

don’t cares output values for output message combinations.

We traverse device protocol FSMs in the reverse order (from

output state towards input state) to find these don’t care out-

puts. This is challenging especially when each protocol FSM

has many states to traverse (given all those states related to

configurations, timing and functionalities). This motivates

us to reduce the number of states at device protocol FSMs.

We thus exploit results from the FSM reduction and min-

imization algorithms in finite automaton. We propose two

novel algorithms that minimize deterministic finite automa-

ton (DFA) states only using the LTE domain knowledge and

https://doi.org/10.1145/3300061.3300134
https://doi.org/10.1145/3300061.3300134
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3300061.3300134&domain=pdf&date_stamp=2019-08-05

skip non-deterministic finite automaton (NFA) states mini-

mization (which is an NP complete problem). Once we obtain

compact representations of device protocol FSMs, we can

quickly find the don’t cares from output message combi-

nations and produce a complete set of test cases without

enumerating all device output message combinations.

To improve LTE testing efficiency, we propose a new al-

gorithm that eliminates repetitive operations for a test case.

Our algorithm is based on the common graph data structure

for all test cases. The graph nodes record the output param-

eters of a particular step in a test case, thus maintaining

execution history in the graph nodes for all steps in the test

case. Those test cases that are executed later do not repeat

the same steps that have been completed by previous test

cases. Instead, they reuse the stored output parameters while

skipping the execution of those steps. However, storing out-

put parameters for all steps of all test cases can be memory

intensive and computationally infeasible. We address this

issue by maintaining multiple graph data structures mapped

to different test scenarios. A graph data structure is shared

among test cases belonging to the same scenario.

To assess our proposed scheme, we have implemented

3GPP test cases together with our algorithms. We create the

device FSMs and their representation as finite automaton.

We also generate complete test cases by excluding don’t

care device outputs. Our evaluation yields 87 new test cases,

where 60 test scenarios were not described in LTE testing

standards. Moreover, our algorithm executes 43%, 11%, 70%

and 50% fewer steps for Attach, Detach, Tracking Area Update
(TAU), and Service Request functionalities, when compared

with the common practice for test case execution.

2 LTE TESTING
We now briefly review the importance of LTE testing, its

limitations, and applications beyond LTE.

Importance of LTE testing LTE testing is a key factor

to make the LTE technology a great success. Operators and

network vendors not only require the manufactured device

(called User Equipments (UEs)) to follow the standards, but

also require each operating in the LTE network to be standard

compliant. 3GPP defines how the phone and the network

should behave in each operation scenario. These operational

settings are formalized in the LTE protocol conformance test-

ing specification [1], which thus specifies a number of test

cases to validate LTE protocol operations. These test cases

ensure that all LTE protocols (e.g., radio resource control,

mobility management, session management, connectivity

management, transport and tunneling protocols) work cor-

rectly in every operational situation. These test cases are

validated through message exchanges between the device

and a Network Simulator (NS). Both the device and the NS

Interacting FSM

Device
FSMs

O1 Network
FSMs

Device
FSMs

O1 Network
FSMsO2

(a) One protocol in-

teraction

Interacting FSM

Device
FSMs

O1 Network
FSMs

Device
FSMs

O1 Network
FSMsO2

(b) Two protocols in-

teraction

Attach Req Attach Req
1 0
0 1
1 1
0 0 Valid

(c) Output message

combinations

Figure 1: LTE test execution scenarios between device and network

implement their Finite State Machines (FSMs), and ensure

the correctness of each test case via the expected state tran-

sitions. Figure 1a illustrates a test case execution scenario,

in which the device FSM generates an output message (O1)

and the NS consumes the message to verify its correctness.

Current LTE Testing Practices and Limitations The
current LTE Testing practices are rather ad hoc. They do

not follow a systematic approach to testing, nor ensure com-

pleteness. Our study shows that, although the LTE standards

discuss LTE testing in a given operational situation as well

as abnormal device behavior, these test cases do not cover ev-

ery possible test scenario. This is mainly because the current

practice has focused on a single protocol execution. When

cases for multiple protocol executions arise, not all interac-
tions among these multiple protocols are tested. Figure 1b

illustates the case when two output messages (O1 andO2) are

fed to NS, which validates the correctness of their interac-

tions. Take the LTE Attach Request procedure as an example.

In this procedure, two EMM (EPS Mobility Management)

protocols interact through the message of Attach Request. It

generates 4 possible output message combinations (as shown

in Figure 1c). (0 , 1) and (1 , 0) denote the absence of a

message from one protocol, thus making it the test case of a

single protocol interaction
1
. (1 , 1) represents the message

from both protocols, indicating a case of two protocol inter-

actions. (0 , 0) is a test case that corresponds to the absence

of messages. The absence of Attach Request message triggers

timeout that may affect the interacting protocols
2
.

We further discover that, LTE testing treats each test case

in the isolated manner based on conformance to LTE test

standards. A test case does not share its execution informa-

tion with a later-executed test case in the series of tests. This

leads to inefficiencies with repetitive execution of test steps

for a new test case to bring device into certain state (e.g., idle

or connected state etc.). For example, almost all LTE Attach
related test cases require the device to be switched off and

then on, so that the device can initiate an Attach test case.

However, such repetitive power off/on steps execution can

be avoided if the next test case uses the knowledge from

the previous test case that has successfully completed these

steps.

1
For example, device protocol generates one EMM message to NS.

2
Such interactions can be between the same protocol (e.g., two EMM message ex-

changes) or between two different protocols (e.g., EMM and ESM (EPS Session Man-

agement) protocols).

We also looked into commercially available testing solu-

tions provided by two leading LTE test equipment vendors

[2], Anritsu [3] and Anite [4]. Their testing data sheets [5][6]

and demos [7] show that, their test equipments do not make

any changes to the implementation guide provided by 3GPP

[8]. They treat each test case individually and only execute

those test cases that are provided by the 3GPP. Their ap-

proach to testing is inefficient as they isolate test cases and

do not transfer the previous test case execution knowledge to

the followup one.We further conclude that, LTE chipset man-

ufacturers, device vendors, and network operators perform

test cases similarly to how test equipment vendors execute

them.

The above observations show that, the testing community

is focused on telecommunication standards and textbook

testing design. We make a case for a paradigm shift to a sys-

tem design approach from computer science when looking

into the LTE testing problem.We aim to design and develop a

testing system that treats individual test cases as the building

blocks in a coherent testing system framework, along with

algorithms to improve efficiency and ensure completeness.

Testing beyond 4G LTE Researchers who are develop-

ing systems for the next-generation wireless networks often

face the challenge of verifying their designs. Testing plays

a crucial role in making their design practical and deploy-

able in reality. Through testing, researchers ensure their

systems to adapt properly and quickly under scenarios that

are both common and corner-case usage settings. Although

we focus on 4G LTE testing in this paper, our methodology

is generic and applicable to other technologies. Two exam-

ples are 5G New Radio (NR) testing and cellular Internet of

Things (CIoT) testing. mmWave with 5G NR will introduce

new test challenges where devices are using transceivers

with integrated phased array antennas. These challenges

include repeatability, configuration, and coverage, as well as

testing accuracy, test time, and cost. These challenges can be

addressed through our proposed testing methodology. Simi-

larly, 5G cellular IoT solutions, including LTE-M and NB-IoT,

require extensive testing before their deployment. Their test

cases are related to network integration, coverage, battery

consumption, and more. Our testing methodology can apply

to these emerging technologies.

3 TEST COMPLETENESS
We next identify limitations of the current practice on pro-

viding a complete list of test cases, and present our approach.

3.1 Limitations and Challenges
We take different test cases as a sequence of message ex-

changes, instead of a particular test scenario. The LTE test

case procedure involves an exchange of messages between

the device and the network. The sequence of these messages

would inform whether the test case has passed or failed. For

example, in the device Attach test case, the device and the

network exchange a number of messages related to Radio

Resource Control (RRC), Security Mode, Authentication, and

Packet Data Network (PDN or IP) connectivity. We view the

LTE testing as the interactions between the device and the

network. If all such interactions (in any order) are successful,
we have completed all tests; otherwise not. To provide a

complete list of cases, we seek to generate a list of tests that

include all possible combinations of these messages. Given

n device output messages, there are 2
n
possible tests, which

are practically infeasible to analyze. The issue is to obtain

the complete list of test cases without enumerations.

3.2 Our approach
We seek to validate LTE protocol interactions to ensure that

all combinations of protocol messages are assessed for cor-

rectness.

Testing as protocols interaction The purpose of device

state transitions and their interactions is to generate a mes-

sage for the network simulator. Hence, LTE testing looks

into message exchanges between the device and the network.

We can thus reduce testing efforts on device protocol FSMs

by simply looking at the output message (O1) that the device

FSMs have produced, as shown in Figure 1a. If the message

produced by the device is the one that the NS is expecting,

then the internal FSM state transitions and interactions at

the device were correct. If the NS has received an unexpected

message from the device, we debug those states that have

produced that output message, instead of traversing all states

of the device FSM(s). Therefore, by checking device output

values, the state transitions can be found, through which a

test case can be defined.

Don’t care outputs We provide a complete set of test

cases that explore all possible output message combinations

produced by the device FSMs, when two protocols interact

between the device and NS. For n possible output messages

produced by two protocols running at the device, one is

required to test 2
n
message combinations.

We reduce the output message combinations for two pro-

tocol interactions. We do not generate test cases for those

combinations that were never produced by the device FSMs.

We annotate these combinations as don’t care outputs. To

find such outputs, we traverse the device FSMs in the reverse

order and check whether the corresponding output is valid

or not. Finding don’t care outputs, however, is practically

infeasible when the device FSMs have too many states.

Compressing device FSMsWe can quickly find the don’t

care outputs if we skip a few states in the device protocol

FSM. We can even skip visiting a portion of FSM that might

have constraints on message combinations. This motivates

us to compress device FSMs by merging states from FSMs.

Finite Automaton To compress FSMs, we model these

FSMs as a finite automaton. Similar to FSMs in finite automa-

ton, we have a start state, a final state, a finite set of states, a

set of transitions, and a transition function. Some states are

deterministic while others are not. If for each pair of states

and possible transitions, there is a unique next state (as spec-

ified by the transition function), then the finite automaton

is deterministic, i.e., Deterministic Finite Automaton (DFA);

otherwise, the finite automaton is non-deterministic, i.e.,

Non-deterministic Finite Automaton (NFA).

Converting NFA to DFA Our goal is to reduce the num-

ber of states and to let FSMs run in polynomial time. We

find that reducing the number of NFA states (by removing

unnecessary states) is shown to be NP complete [9]. More-

over, running time for an NFA is O(n2m) compared to O(m)
in case of DFA, where n is the number of states, and m is

the number of identical transition conditions [10][11]. This

is because NFA has n possible next states compared to DFA,

which has only 1 path to next state for a given transition.

This motivates us to convert NFA into DFA.

3.3 LTE Testing as Finite Automata
Overview of our solution Wemodel the LTE testing as the

problem of finding don’t care output combinations in Finite

Automata. All possible output combinationsminus don’t care
outputs are the complete list of test cases. To find don’t care

outputs efficiently (i.e., the running time of FSM interactions

remains linear), we first convert NFA into DFA. We propose

a novel algorithm that reduces FSMs states by converting the

selected NFA states to DFA. We further minimize those FSMs

states through the DFA minimization procedure. We can do

so because two or more DFA states can be equivalent, where

these states migrate to the same next states upon the same

transition condition. We merge these equivalent states and

get compact representations for the LTE protocol FSMs. To

merge as many equivalent states as possible, we introduce a

new definition of states equivalence. Using the LTE domain

knowledge, we argue that a number of FSM states have LTE

timing and protocol constraints. These states are equivalent

and merged because in reality they never occur together. In

this regard, we propose a novel DFA minimization algorithm

that converts non-equivalent states to equivalent states and

merges these states.

3.3.1 Reducing FSM States

We first convert the NFA states to the DFA states to reduce

the total number of states in FSMs.

Inefficiencies in NFA to DFA conversion The Robins

and Scott algorithm [12] is the best known scheme to convert

NFA to DFA [13][14]. Such a conversion is made through

power set construction. The DFA is obtained through a state

set 2
n
, the power set of n, containing all subsets of the origi-

nal NFA state set n. The exponential number of DFA states

are due to the degree of non-determinism of the current

state. The current state can transition to a number of next

states for n possible transitions. Through power set construc-

tion – which is practically inefficient – all possible states

are recorded. It has been shown [15][16] that the number of

states in DFA dramatically increases when more than one

transition conditions are considered. It has been proved that

the maximum number of states in DFA reaches 2

n
2 , 2

2n
3 , 2

3n
4 ,

and 2
n
when the number of transitions are 2, 4, 8, and n,

respectively.

Algorithm 1 Selected NFA states to DFA states conversion

1: input: = {nstates, trans_cond, trans_func, curr_state, next_state}
2: Call procedure Reverse-Edges()

3: procedure NFA-to-DFA-procedure
4: while nstates are not visited do
5: if curr_state transitions to two or more next_state then
6: if trans_func takes only one trans_cond then
7: for all next_states do
8: dfa_state ∪ next_state
9: divert edge arrows from next_states to dfa_state
10: add edge from dfa_state to curr_state
11: add trans_cond to the edges

12: Call procedure Reverse-Edges()

13: procedure Reverse-Edges
14: if curr_state transitions next_state(s) on trans_cond then
15: for all next_state(s) do
16: swap (curr_state, next_state(s))
17: reverse edges arrows

18: keep trans_cond and trans_func

Converting selected NFA states to DFA We next pro-

pose NFA to DFA conversion (Algorithm 1) that converts

only those selected NFA states to DFA and does not generate

power set of NFA states. In our algorithm, we focus on two

aspects: (1) visiting the states from the output (in reverse),

and (2) converting those NFA states to DFA with only one
transition condition (which is common in LTE, as we will

show later).

For (1), we swap the current state with the next state (Step

16) and reverse the edges, while keeping transition condition

and function unmodified (Steps 17-18). Thereafter, the FSM

can be traversed in reverse and the initial FSM state can be

reached that has generated final output value. For (2), our

algorithm processes only those states that have exactly one

transition condition to the next state. We first check whether

the current state is indeed an NFA, i.e., it has more than one

next states on a given transition condition (Step 5). Note that,

when the current state has only one next state, the current

state is already deterministic and the algorithm moves to the

next state (Step 4). When the first if condition (Step 5) yields

true, the algorithm checks whether the state transitions are

carried through one transition condition or not (Step 6). If

this condition is satisfied, NFA to DFA conversion begins. In

Idle_Wait

RACH RNTI Cell 11

TC 8.1.2.13: RRC connection establishment / 0% access probability for MO calls, 0% access probability for
MO signalling

RACH RNTI Cell 1

RRC_Init

Timer T305 = 40 sec

Timer T302 = 30 sec RRC req

RRC reqCell
access

Attach_Init Attach_Proceeding

EMM_Deregistered_
Attempting_to_Attach

EMM_Deregistered

Timer T3402
= 12 min

Timer T3411
= 10 sec

Attach needed

Attach needed

Attach reject

Attach reject Attach
req

TC 9.2.1.1.30: 1-5 attach reject, move to attempting-to-attach state. On 6th reject move to emm-deregisterd

Delete any
GUTI, TAI list,
last visited
registered TAI,
list of equivalent
PLMNs and KSI

PDN_Req_Init

Bearer_Context_
Active_Pending

Procedure_
Transaction_Pending

PDN req

PDN req

Timer T3482 = 8 sec

10.5.1 UE requested PDN connectivity accepted by the network (Pdn response_pending)
10.5.3 the UE has sent a PDN CONNECTIVITY REQUEST message to an additional PDN

Cell
access

PDN_Req_Init Response_PendingPDN req

Timer T3482 = 8 sec

Response_Pending:
{Procedure_Transaction_Pending,
Bearer_Context_Active_Pending}

Idle_Wait RACH RNTI Cells RRC_Init

Timer T305 = 40 sec

Timer T302 = 30 sec

RRC
req

Cell
access

RACH RNTI Cells:
{RACH RNTI Cell 11, RACH
RNTI Cell 1}

(a) ESM NFA

Idle_Wait

RACH RNTI Cell 11

TC 8.1.2.13: RRC connection establishment / 0% access probability for MO calls, 0% access probability for
MO signalling

RACH RNTI Cell 1

RRC_Init

Timer T305 = 40 sec

Timer T302 = 30 sec RRC req

RRC reqCell
access

Attach_Init Attach_Proceeding

EMM_Deregistered_
Attempting_to_Attach

EMM_Deregistered

Timer T3402
= 12 min

Timer T3411
= 10 sec

Attach needed

Attach needed

Attach reject

Attach reject Attach
req

TC 9.2.1.1.30: 1-5 attach reject, move to attempting-to-attach state. On 6th reject move to emm-deregisterd

Delete any
GUTI, TAI list,
last visited
registered TAI,
list of equivalent
PLMNs and KSI

PDN_Req_Init

Bearer_Context_
Active_Pending

Procedure_
Transaction_Pending

PDN req

PDN req

Timer T3482 = 8 sec

10.5.1 UE requested PDN connectivity accepted by the network (Pdn response_pending)
10.5.3 the UE has sent a PDN CONNECTIVITY REQUEST message to an additional PDN

Cell
access

PDN_Req_Init Response_PendingPDN req

Timer T3482 = 8 sec

Response_Pending:
{Procedure_Transaction_Pending,
Bearer_Context_Active_Pending}

Idle_Wait RACH RNTI Cells RRC_Init

Timer T305 = 40 sec

Timer T302 = 30 sec

RRC
req

Cell
access

RACH RNTI Cells:
{RACH RNTI Cell 11, RACH
RNTI Cell 1}

(b) ESM DFA

Figure 2: One-transition NFA states are converted into DFA

such a conversion, our algorithm merges all next states for

the current state and creates one DFA state, which is a set

of merged states (Step 8). Thereafter, it changes the edges

such that all incoming and outgoing edges of all merged next

states are diverted to the newly created DFA state, and a

transition edge is inserted between the DFA state and the

current state (Steps 9-11). Finally, we reverse the edges from

the current state to the next state(s) before we take further

actions on DFA states. Note that this is an important step

before we further reduce DFA states (section 3.3.2). If we do

not reverse the edges, reducing DFA will guide us NFA back

again. This has been shown in Brzozowski’s algorithm [17],

where DFA minimization converts the input DFA into an

NFA by reversing all its arrows and exchanging the roles of

the current and next states.

States with one transition condition are common in
LTEWe next show that one transition condition states are

common in LTE; they are related to LTE timers and function-

alities. The most common examples are timers that handle

reject conditions. The standards mandate that, if the device

request is rejected for certain number of times, the current

state should migrate to a particular next state (with the re-
ject transition condition); otherwise, the current state should

move (with the same reject transition condition) to another

different next state. Similarly, most LTE functionalities also

have NFA states with exact one-transition condition. The

transition condition remains the same for different actions,

such as cell search, camping on cell, multiple or single bearer

request, and priority related features. For example, if the

device serving the cell state meets certain threshold value, it

should move to the intra-freq measurement state; otherwise,
it migrates to the inter-frequency measurement state. The
transition condition for both states is measurement.

Discussion Our algorithm processes those states with

only one transition condition to the next state. It does not

construct the power set of states. The complexity of our

algorithm is linear where the while() loop (Step 4) iterates

over a limited number of states (the finite set of states is

provided as an input to the algorithm). The for() loop (Step

7) also iterates over a constrained number of next states,

because our algorithm executes this step only when the

current state moves to the next states upon single transition

condition. Note that, the number of next states can be found

by looking at the number of arrows coming to the current

state (note that we are looking at arrows but not tails, as we

are processing in reverse).

RRC
Idle

TA cell
change

Re-estb
failure

TA
Recovery

RRC
Conncted

Connct
Recovery

TAU
Init

TAU
Req

TAU
Req

RRC
Idle

TA cell
change

Re-estb
failure

Recovery
Procdure

RRC
Conncted

TAU
Init

TAU
Req

Recovery Procedure: {TA
Recovery, Connect Recovery}(a) DFA states before minimiz-

ing

RRC
Idle

TA cell
change

Re-estb
failure

TA
Recovery

RRC
Conncted

Connct
Recovery

TAU
Init

TAU
Req

TAU
Req

RRC
Idle

TA cell
change

Re-estb
failure

Recovery
Procdure

RRC
Conncted

TAU
Init

TAU
Req

Recovery Procedure: {TA
Recovery, Connect Recovery}

(b) DFA states after minimizing

Figure 3: Two equivalent DFA states are combined

Example We now provide an example where our algo-

rithm converts an NFA to a DFA, as shown in Figure 2. Two

different tests (case numbers 10.5.1 and 10.5.1b in [1]) move

from the current state of PDN_req_init into two different

states Procedure_Transaction_Pending and Bearer_Context_
Active_Pending states, respectively, using one transition con-

dition "PDN req". Both cases are requesting PDN from the

network. The first case requests an additional PDN for its up-

link (UL) data, whereas the second test requests an additional

PDN but using NAS signaling low priority. In 10.5.1b, the

device establishes a dedicated radio bearer associated with

the default EPS bearer context, before sending an additional

PDN connectivity request. This is why the device moves to

the Bearer_Context_Active_Pending state.

3.3.2 Minimizing FSM States

In DFA minimization, two or more equivalent DFA states are

merged and represented by one state. Two or more states

are said to be equivalent, if these states migrate to the same

next state upon the same transition condition.

DFA minimization overview The Hopcroft algorithm

for DFA minimization [18] is the best known solution to

minimizing a DFA [19][20] with its complexity of O(nlogn).
The key idea is to partition the states when two states are

not equivalent. At first, all states are placed into one parti-

tion and thereafter the partition in refined. The states that

are not equivalent are removed from the partition, whereas

the equivalent states are merged. The key ingredient of the

algorithm lies in how partitioning is done. The trick is to

not partition on already visited transition conditions until

the partition is further split. In that case, the algorithm only

checks one of the two new partitions.

DFA minimization of mixed NFA-DFA FSM We pro-

pose a new algorithm for DFA minimization, but use the

partitioning procedure from the Hopcroft algorithm. Unlike

the Hopcroft algorithm that works on DFA FSM only, our

algorithm reduces FSM which is a mix of NFA-DFA. Indeed,

like many other FSMs, LTE protocol FSMs are the hybrid

of NFA and DFA states, where we have also converted few

NFA states into DFA states (algorithm 1). From the Hopcroft

algorithm, we find that, as the number of equivalent states

increases, the number of states in FSM decreases (as the

equivalent sates are merged). Although we cannot increase

the states equivalence in FSM, we can obtain similar results

by merging two or more states that have constraints on each

other. We use our LTE domain knowledge and introduce

protocol states and timing constraints.

Protocol state constraints In LTE protocol FSMs, some

states have constraints on others. A few of such constraints

have been described in the LTE NAS standard specification

(Figure 5.1.3.2.2.7.1: EMM main states in the UE) [21]. For

example, when the device is at the idle state and plans to

send/receive voice/data packets, it initiates the Service Re-
quest (SR) procedure and moves to the Service_Request_Init
state.While the SR procedure is ongoing, if the device changes
its location and performs the Tracking Area Update (TAU) pro-
cedure, it cannot do so. This is because the TAU procedure

can only be initiated from the device state of EMM_Registered.
We can say that all TAU and SR related states have constraints
on each other, where the device cannot be at both states con-

currently and we can merge these states. As a result, our

modified FSMs will never produce those output values that

capture TAU and SR interactions (which are don’t care out-

puts). In short, we list all such protocol constraints andmerge

them.

Timing constraints: Similar to protocol state constraints,

there are timing constraints between states. For example, to

initiate the normal TAU request message, the device must

have moved to a different LTE base station cell (that is, its

location must have been changed). Further, the LTE base

station can only correspond to one tracking area, because

System Information Block-1 (SIB1) broadcasts only one track-

ing area code for a cell. Therefore, one cell cannot belong

to two different tracking areas. This example illustrates the

timing constraint situation where the normal TAU proce-

dure can only be initiated after the device has roamed to a

different cell in a different tracking area.

Algorithm 2 Minimizing DFA states

1: input: = {nstates, trans_cond, trans_func, curr_state, next_state}
2: procedureMinimize-DFA

3: p1 is sub-partition 1; p2 is sub-partition 2

4: constraint , constraint vector
5: while no further partitions can be done do
6: parition_1, all set of states in FSM; parition_2, ∅
7: for each element p of parition_1 do
8: if p is non-deterministic then
9: split(p, parition_1)
10: else if (p → other partitions) OR (p < constraint) then
11: {p1 ,p2} = split(p, parition_1)
12: if p belongs to {p1 ,p2} and p , ∅ then
13: parition_2 = p
14: if curr_state == p then
15: curr_statemin = p
16: else if next_state == p then
17: next_statemin = p
18: update trans_cond for p

Algorithm We now explain our algorithm of minimiz-

ing DFA states, as described in Algorithm 2. At the start,

there is only one partition that contains all states in an FSM

(Line 6). Like the Hopcroft DFA minimization algorithm,

our scheme iteratively reduces partitions by removing non-

identical states. However, at each iteration, it only takes

action when the state is deterministic (Line 10); otherwise, it

splits the partition and removes the non-deterministic state

(Lines 8-9). Before acting on deterministic states, it ensures

that (1) for state p, there is no equivalent state, i.e., state p
does not belong to the current partition (p → other parti-

tions); and (2) there is no state in the current partition that

has constraints with state p (i.e. p < constraint). If both (1)

and (2) are false, it implies that the current state has equiva-

lent or constrained state in the partition and for() loop (Line

7) moves to the next iteration. If either (1) or (2) is true, state

p is moved out of the partition (Line 11) and becomes a dif-

ferent partition (Line 13). Once the algorithm moves p out of

the partition, it checks whether p belongs to the current state

or the next state and updates accordingly (Lines 14-17). Note

that it is possible that the merged states may not be fully

connected to other states. Therefore, at each iteration, we

make sure that all incoming and outgoing transition arrows

of the merged states are updated accordingly (Line 18).

Discussion Our algorithm does not incur additional com-

plexity compared with the Hopcroft algorithm, which de-

termines the state to be deterministic or non-deterministic

in one step (Line 8). It simply checks that the current state

must not migrate to more than one next states for a given

transition condition. This implies that, the state is NFA with-

out even checking the next states. The step of splitting on

non-deterministic states can be viewed as the state having

no equivalence behavior. Therefore, the splitting procedure

(Line 9) does not add extra complexity. The step of checking

the protocol state and timing constraints requires to know

whether the current state being partitioned is part of the

constraints or not. If it is part of a set of constraints, the al-

gorithm checks whether the current partition contains those

states or not. We make these two steps efficient by first log-

ging all such constraints as a constraint vector. The vector is

of fixed length and the number of constraints are not large

(because these constraints are related to overall LTE func-

tionalities, but not specific to states or timers). Therefore,

checking this constraint can always be done in polynomial

time. Furthermore, we avoid creating extra steps by merging

constraint conditions with partition conditions.

Example We now show an example of three LTE test

cases where our algorithm minimizes the equivalent DFA

states. Three cases (test case number 9.2.3.1, 9.2.3.1.9a, and

8.5.1.4 in [1]) share part of the common procedure. As shown

in Figure 3, these tests perform the TAU procedure but under

different triggering conditions. In test case 9.2.3.1, when the

device moves to a different cell in a different tracking area,

it initiates TAU. However, in test cases 9.2.3.1.9a and 8.5.1.4,

the device fails to recover from the radio link failures and

needs to perform connectivity recovery. Once recovered, the

TAU procedure is performed. Hence, we can minimize these

DFAs by merging TA Recovery and Connect Recovery states

(shown in Figure 3b).

Table 1: Summary of test cases – our procedure finds new legitimate test cases

Protocol
Interaction

Procedure
defined by
3GPP

Tests cases de-
fined by 3GPP

Procedure not
defined by 3GPP

Total missing
test cases by
3GPP

ECM
3
and ECM 141 118 18 14

ECM and EMM 14 10 7 11

EMM and EMM 161 142 29 54

ESM and ESM 25 22 6 8

Total 341 292 60 87

3.4 Proof of Completeness
We prove the completeness by contradiction. The intuition

is based on contradicting the number of possibilities and

reasoning that our test cases cover them all.

Proof by contradiction We consider two cases and con-

tradict them to show the completeness.

Case 1: Assume that a practical input value was not tested.

It is true that we do not test for don’t care output values,

but these values never happen in reality. We ignore all those

input values I that the FSM will never produce (called don’t

care outputs X). Skipping test cases with don’t care values

will not lead to missing test cases (i.e., incompleteness sce-

narios) because in reality there are no such FSM transitions.

We test all practical combinations of output values of a FSM

defined by the 3GPP standards. C is a specification domain

that includes all FSM states S that work with the finite set

of inputs, I . That is, C = S × I . Furthermore, we traverse the

FSM in reverse for a given output valueO (Algorithm 1), and

we always trace back to the given input value I . In other

words, the output leads us to the deterministic FSM and all

states can be traversed. This shows that there is not any

practical value that was not tested on a completely defined

FSM. Hence, our argument contradicts the assumption that

we can miss any practical input value that drives the FSM

state(s).

Case 2: Assume that certain protocol interactions are miss-

ing. Missing those protocol interactions that never occur in

reality is equivalent to not testing the case that never occurs.

Recall that we consider two protocol interactions. Therefore,

for every output value, there are two possibilities for the

other output (where the other protocol output exists or not).

In other words, we have four possible combinations (these

are not four values). Because all such possibilities are within

the 3GPP standardized device behavior, we can test all valid

combinations (that an FSM can generate). Hence, it is not

true that we could miss certain protocols interactions.

By contradicting both cases, we prove that the test cases

we generate are complete.

3
EPS Connection Management (ECM) involve signaling connection that is made up

of two parts: an RRC connection and an S1_MME connection. In this paper, RRC test

cases are part of ECM procedure.

3.5 Analysis
Once we have reduced the device-side FSMs and identify

don’t care output values, we can generate the complete test
cases for LTE protocol interactions. We next provide analysis

on test completeness, but defer to Section 5 for discussion

on our implementations.

Our procedure generates 30% more test cases compared

with the test cases defined by 3GPP. Our result is summa-

rized in Table 1. We also find that, 60 protocol interactions

are not specified by the 3GPP protocol standards. Table 2

shows the list of 10 new test cases and identifies new vulner-

abilities in the 3GPP standard. The remaining 74 test cases

expose relatively less serious issues, such as delay in service

access, procedure repetition, downgrade to lower-priority

cell, temporary loop between the device states (i.e., idle and

connected states), two procedures temporarily blocking each

others, etc. Now we provide brief analysis on three novel

vulnerabilities discovered by our test cases (other than those

discussed in Table 2).

Integrity and ciphering is not enforced We discover

that, the device can skip the RRC ciphering and integrity

protection even if both are enabled at the network. Such a

scenario has been shown in Figure 4, where the Attach Re-
quest message is forwarded to MME (Mobility Management

Entity) (Step 4) before the RRC security procedure starts

(Step 6). If the device sends the Security Mode Failure mes-

sage to eNodeB (i.e., the LTE base station), the 3GPP standard

allows the device to communicate with the network without

any protection, whereas the Attach procedure is allowed to

complete. We verify this with the LTE RRC standard (Section

5.3.4 Initial security activation procedure in 3GPP TS 36.331

[22]). The standard mandates that, after sending the Security
Mode Failure message, the UE shall “continue using the con-

figuration used prior to the reception of the Security Mode
Command message, i.e., neither applies integrity protection

nor enables ciphering."

To address this issue, we create a test case that makes 5

retries on the Security Mode Command message, upon receiv-

ing the Security Mode Failure message from the device. Once

receiving the 5
th Security Mode Failure message, the eNodeB

bars the device from camping on its cell for 60 seconds in

our test case.

Sending data without RRC security success We find

that, the device can send uplink data even if it has failed to

complete the RRC security procedure, as shown in Figure 5.

The device sends the Attach Request message as piggybacked

with the RRC Connection Complete message and migrates to

the RRC-Connected state. In the RRC-Connected state, the eN-

odeB sends its Security Mode Command to the device (Step 6).

However, before receiving the Security Mode Response from
the device, eNodeB establishes its Signaling Radio Bearer 2

Table 2: Summary of novel findings. These use cases are not defined in 3GPP testing standard and potential vulnerabilities remain untested.

Issue Protocols Problem Root Cause Impact 3GPP
test case
exists?

Standard dis-
cusses issue?

Detaching

victims

ECM – EMM Device can send non-integrity pro-

tected Detach with cause power off
The standard allows certain types of messages can be

sent as non-integrity protected

Adversary can let victim

device detach.

No No

Service pro-

visioning

ECM – EMM Local EPS bearer context is deacti-

vated without ESM signaling

The device fails to establish user plane radio bearers

when ECM process at network is delayed

EPS bearer context deac-

tivated.

No No

Skipping in-

tegrity

ECM – EMM TAU message without integrity

protection is accepted

TAU due to an inter-system change in idle mode is ac-

cepted by the MME even without integrity protection

The device reports

wrong location to

network.

No No

Privacy leak-

age

EMM – ECM After 4 retries fromMME, theGUTI

reallocation procedure stops

MME does not mark the device which has failed to per-

form GUTI reallocation procedure as vulnerable.

Using old GUTI compro-

mises user location.

No No

Null in-

tegrity

EMM – EMM 2
nd

attach is processed by MME

whose IE differs from 1
st

attach

The device capability related information element (IE)

in the Attach Req differs from the ones received earlier

Device attaches as non-

integrity protected.

No No

Barring to

Attach

EMM – EMM Processing Attach request without

receiving Identity Response

The MME processes the Attach Request while waiting

on Identity Response message from UE

Sending Attach instead

of Identity Req bars UE.

No No

Inconsistent

states

EMM – EMM Device proceeds Detach procedure

whereas MME proceeds TAU

Before the detach request is received at UE, UE initiates

TAU procedure. MME aborts detach and proceeds TAU

MME and Device states

are inconsistent.

No Yes, TS 24.301,

5.5.2.3.5 e

TAU is

blocked

ESM – ECM PDN procedure is blocked by RRC

reconfiguration (doing TAU)

Bearer Modification and RRC-Reconfiguration with

TAI change collide. TAU is blocked by earlier procedure

UE will end up keeping

invalid tracking area.

No No

Unauthorized

connection

ECM – ECM UE keeps radio connection for re-

jected RRC request

When the user identities are not found at EPC, the RRC

req is rejected but UE remains camped on eNodeB cell

Connecting eNodeBwith

expired USIM cards.

No Yes, TS 36.413,

8.3.3

Deadlock ESM – ESM UE and network both initiates Ded-

icated Bearer Procedures

Both UE and network has received/sent Activate Dedi-

cated Bearer Request and enter into undefined behavior

Network and UE wait on

each other request.

No No

UE RRC eNodeB MME

2. RRC-Conn-Req
3. RRC-Conn-Setup

4. RRC-Conn-Comp
(Attach Request) 5. Attach Request

6. Sec-Mode-Cmd

7. Sec-Mode-Failure

• The SECURITY MODE FAILURE message is used to indicate an unsuccessful completion of a SECURITY MODE
COMMAND. i.e., if the SECURITY MODE COMMAND message fails the integrity protection check, then the UE
sends SECURITY MODE FAILURE to the eNodeB. Upon sending this message, the UE shall “continue using the
configuration used prior to the reception of the SECURITY MODE COMMAND message, i.e. neither applies
integrity protection nor ciphering”

• 5.3.4 Initial security activation proceure in 3GPP TS 36.331

No integrity and ciphering

UE NAS
1. Attach Req

Figure 4: RRC integrity and ciphering is not ap-
plied

UE RRC eNodeB MME

2. RRC-Conn-Req
3. RRC-Conn-Setup

4. RRC-Conn-Comp
(Attach Request) 5. Attach Request

• If the RRCConnectionReconfiguration message includes the establishment of radio bearers other than SRB1,
the UE may start using these radio bearers immediately, i.e. there is no need to wait for an outstanding
acknowledgment of the SecurityModeComplete message.

• Section 5.3.5.3 Reception of an RRCConnectionReconfiguration, Note 3

• Note: No timer on security mode command (to resend unacked security challenge)

Sending data without RRC security

UE NAS
1. Attach Req

RRC-connected

7. RRC-Conn-
Reconfig. Req
8. RRC-Conn-
Reconfig. Compl 9. Attach Accept

10. Attach Complete

Data

6. Sec-Mode-Cmd

Figure 5: Data transmission starts without acti-
vating RRC security

UE RRC eNodeB MME

2. RRC-Conn-Req
3. RRC-Conn-Setup

4. RRC-Conn-Comp
(Attach Request)

• In state EMM-DEREGISTERED, the UE initiates the attach procedure by sending an ATTACH REQUEST message
to the MME, starting timer T3410 and entering state EMM-REGISTERED-INITIATED

• 5.5.1.2.2 Attach procedure initiation
• TS 24.301

Re-Attachment is delayed

UE NAS
1. Attach Req

RRC-connected
5. RRC-Conn-
Re-establish Req
6. RRC-Conn-
Re-establish Comp

Waiting for Timer
T3410 to expire

T3410 =
15 sec

RLF

Figure 6: Re-Attach Request is delayed due to Radio
Link Failure

(SRB) for the device’s uplink/downlink data by performing

the RRC Connection Reconfiguration procedure (Steps 7-8).

Meanwhile, the Attach procedure completes (Steps 9-10);

whereas the device does not generate the security mode re-

sponse at all. We find that, the device is able to send its uplink

data even if the RRC security procedure did not conclude.

This is indeed a loophole in the standard (see Section 5.3.5.3

Reception of an RRC Connection Reconfiguration procedure

in 3GPP TS 36.331 [22] and Note 3). It has been stated that,

“if the RRC Connection Reconfiguration message includes the

establishment of radio bearers other than SRB1, the UE may

start using these radio bearers immediately, i.e., there is no

need to wait for an outstanding acknowledgment of the Se-
curity Mode Complete message."

Note that eNodeB does not have any timer linked to the

securitymode command and cannot resend the SecurityMode
Command message, if the response to the previous request is

not made. To address this vulnerability, we add a test case to

ensure the device has sent the security mode response (i.e.,

complete or reject).

Re-Attach Request is delayed In this issue, the device

registration procedure is delayed up to 15 seconds (the de-

fault value for timer T3410). Figure 6 shows that, although the

eNodeB has failed to receive the RRC Connection Complete
message piggybacked in Attach Request, the device enters
the RRC Connected state. Such a failure of message arises

because of the Radio Link Failure (RLF). Upon RLF, the de-

vice recovers its radio connectivity by performing the RRC
Connection Reestablishment procedure (Steps 5-6), but does
not resend the Attach Request message. Therefore, the NAS

layer at the device times out for the Attach Request message

and resends the request. One can argue that the RRC Connec-
tion Complete message sent over SRB1 will be recovered by

the Radio Link Control Acknowledgement procedure (RLC

ACK). However, the RLC procedure recovers the bit errors or

retransmission failures over the wireless link, and does not

recover the failure because of the device being out of sync

with the eNodeB cell (RLF scenario). Moreover, the RLC ACK

mode has small timer value (45 milliseconds as the default

value [22]) and cannot recover the failure when the radio

recovery procedure takes too long.

Test Case 2: Attach / Success / With IMSI / GUTI reallocation

EMM
Attach

Test Case 1: Attach / Success / Valid GUTI

Test Cases Operations StepsProtocols Functions

RRC
RRC Request
RRC Setup
RRC Complete (Attach Req)

Security
Authentication Request
Authentication Response
Security Mode Command
Security Mode Response

ESM
ESM Request
ESM Response

Attach
Attach Complete
Attach Accept

Power
Power Off
Power On

RRC
RRC Request
RRC Setup
RRC Complete (Attach Req)

Security
Authentication Request
Authentication Response
Security Mode Command
Security Mode Response

ESM
ESM Request
ESM Response

Attach
Attach Complete
Attach Accept

Detach
Detach Request
Detach Accept

Power
Power Off
Power On

TAU
Figure 7: Most of the test case steps are repetitive among test functions. Each
LTE protocol (EMM protocol in the Figure) tests a number of test cases (test
case 1 and test case 2) that belong to particular LTE function (LTEAttach func-
tion). These test cases perform a number of operations (power cycle, RRC, se-
curity, etc.). These operations further execute a number of steps (RRCReques,
RRC Setup, RRC Complete etc.)

To address this issue, we create a test case where the

EMM layer requests the RRC layer to notify its piggybacked

request. If RRC is not able to deliver the piggybackedmessage

within a couple of seconds, the EMM layer will resend the

packet.

4 LTE TESTING EFFICIENCY
We next identify inefficiencies when running LTE test cases,

and propose a graph based test case execution methodology

to improve the efficiency.

4.1 Limitations and Challenges
Testing limitations and challenges arise during scheduling

and execution.

Test cases scheduling Protocol conformance tests verify

whether a device complies with the LTE protocol specifica-

tions or not. Each protocol supports a number of functions

that logically separate one protocol from another. For exam-

ple, the main functions of the Radio Resource Layer (RRC)
protocol are to establish, configure, maintain and terminate

the device’s wireless connectivity with the LTE base station.

Similarly, the EPS Mobility Management (EMM) protocol sup-
ports functions related to device mobility, including device

registration, authentication and security, location update,

and deregistration with the network. Each protocol function

is further divided into multiple test cases, each of which

Operations Steps Time
(sec.msec)

Power

Power off 00.00

Power on 34.002

RRC

RRC Connection Req 34.009

RRC Connection setup 34.104

RRC Connection complete 34.147

Security

Authentication Request 34.150

Authentication Response 34.285

Security Mode Command 34.288

Security Mode Complete 34.428

ESM

ESM Information Request 34.459

ESM Information Response 34.770

Attach

Attach Accept 35.455

Attach Complete 35.486

Table 3: Time taken for each step in one of
LTE Attach test case

Power

RRC

Secure

ESM

Attach

Power on

Power off

Auth req

Auth resp

Attch acpt

Attch comp

Sec comp

Sec req

ESM resp

ESM req

RRC setup

RRC req

RRC comp

Figure 8: Graph data structure
of test case execution

supports operations that execute a number of steps. Figure 7

shows an example of the EMM protocol’s Attach function

that has several test cases. Each case performs several opera-

tions that finally execute test steps. In the current practice,

all tests from a particular function must complete before

tests from other functions could start. However, we find that,

many functions are independent of each other, their pre-

conditions are different, and do not overlap with each other.

Take the example of tests that validate two different func-

tions (i.e., device Attach and Tracking Area Update (TAU))
from the same protocol EMM. The Attach function is respon-

sible for device registration with the network, whereas the

TAU function updates the new location to the network upon

location updates. To initiate the Attach related cases in EMM,

the device must be deregistered; whereas to initiate the TAU
related tests, the device must be registered and its location
should have been changed. We argue that two independent

functions can be executed in parallel (such as Attach and

TAU functions in EMM), not currently supported by 3GPP

(inefficiency 1).
Test case execution Protocol conformance tests certify

that each protocol function is executed under all usable con-

ditions. To test each condition, 3GPP defines a new test case

that ensures correctness in terms of the signaling flow and

the content of each message. However, all such tests execute

repetitive operations. For example, the Attach function is

validated for two types of device identities (i.e., GUTI and

IMSI). These are test conditions for which two separate At-
tach tests are defined (test cases 1 and 2 in Figure 7). Both

cases validate the Attach operation when “Valid GUTI" is

passed as a test condition, or “IMSI/GUTI reallocation" is set

as a test condition. However, we see both cases perform a

number of repetitive operations (e.g., Power, RRC, Security,
and ESM) that are not related to conditions. As a result, case

2 (Figure 7) executes (i.e. exec()) 63% redundant steps which

are already performed by case 1 (Figure 7) (inefficiency 2).

4.2 LTE Testing as a Graph Data Structure
We improve efficiency via a graph data structure approach.

Overview of our solution We abstract test execution

as a graph data structure, where graph non-leaf vertices

represent protocol operations and leaf vertices denote the

steps that protocol operations take, as shown in Figure 8. We

seek to reduce the execution of those steps that are common

among different tests of a protocol function (mitigating in-
efficiency 2). We let all tests of a given protocol function to

execute one-by-one on the single graph data structure. As

an operation step runs, we record its execution information

in memory, such as its output parameters. We can thus find

whether non-leaf vertex was previously visited or not. If it

was visited before, we retrieve the output of that operation

steps from memory and move to the next operation without

executing these steps. Note that, we are not skipping any

step, rather to bypass those executions by retrieving their

logged output parameters. Furthermore, we change the cur-

rent practice by allowing test cases from different protocol

functions to execute in parallel (alleviating inefficiency
1).

Savings To quantify the efficiency of our approach, we

execute the LTE Attach related test case over the Anritsu test
simulator [23]. Table 3 shows the time taken by each step

during the LTE Attach. The overall test takes 35 seconds and
486 milliseconds to execute. If we eliminate those repetitive

steps on device power off/on during 56 Attach related test

cases, we can save about 31 minutes. If we further avoid

repeating executions of RRC, Security and ESM related steps,

our test duration decreases from 1.486 seconds to merely

0.031 seconds for each of the followupAttach test case. Hence,
our approach can decrease the Attach related tests from 33

minutes to 37.222 seconds, 53.66X execution time savings. In

this paper, we discuss test efficiency in terms of steps; the

lower the number of steps a test executes, the faster it runs

in wall clock time.

ContributionsWe make two contributions. First, to im-

prove test efficiency, we minimize executions by reusing

the results from those completed cases. Second, we enable

concurrency between different cases and execute concurrent

tests in parallel to speed up.

4.2.1 Optimizing test cases

In the proposed scheme, we first initialize a graph that repre-

sents all tests of a protocol function. We then perform graph

traversal and eliminate reexecuting common operation steps.

Graph initialization Graph initialization is performed

at the start of testing. This procedure maps the test case to a

graph. Two operations are performed in graph initialization.

• Create the graph non-leaf vertices. Each non-leaf vertex

denotes an operation.

• Add leaf vertices to a non-leaf vertex. Each leaf vertex

represents a step of an operation.

Since the graph representation is to represent all test cases

of a protocol function, repetition of common graph vertices

is avoided as early as in the initialization phase. If a specific

test operation performs an extra step (e.g., RRC Connection
Release, in addition to three RRC steps – RRC Connection Re-
quest, RRC Connection Setup, and RRC Connection Complete),
this step must be added with the original operation (RRC)
rather than creating a new RRC vertex with just one step.

Such an approach provides a compact representation for the

graph data structure, thus reducing memory utilization and

computation.

Graph traversal Graph traversal starts as soon as the

first test of a protocol function runs. For the first case, all leaf

and non-leaf vertices are executed. During the process, each

leaf vertex reports its execution parameters to the associated

non-leaf vertex. The non-leaf vertexmarks itself as visited
and stores reported parameters.

For each non-leaf vertex i , we store an array of the vertices
(its leaf vertices) adjacent to it. Each array element refers to a

character array that contains all parameters produced during

the execution. After the execution of first test, the second

case of the same protocol function starts. The second test is

probably executing most operations as the first one. How-

ever, one or two operations are required to be re-executed

because the test condition has changed. Therefore, simply

looking at themark field to learn whether the operation was

previously executed or not is misleading. For example, At-
tach with valid GUTI and Attach with IMSI are two different

tests but perform mostly the same operations (RRC, Security,
ESM, and Attach operations, as shown in Figure 7). They

only differ in the Attach operation. To address this issue, we

leverage our domain knowledge and identify those opera-

tion(s) pertaining to the test case. To this end, we examine

test conformance requirements that describe why the test

is executed and which protocol operations will be impacted.

For example, both Attach with valid GUTI and Attach with
IMSI require that the Attach operation be validated under

two different conditions (i.e., GUTI and IMSI). Therefore,

even though the Attach operation is marked by the first test

as executed, we have to re-execute the operation. We thus

modify our implementation by first creating a hash value

of the test condition, and then associating all those leaf ver-

tices of the operation under the test condition with that hash

value. For each non-leaf vertex i , the array of the vertices

(its leaf vertices) adjacent to it are represented by the hash

value of the test condition.

Suppose that Attach with valid GUTI was the first test

case that completes its execution. Now the second test, say

Attach with IMSI, starts its execution. We know that the hash

value of the condition (IMSI) maps to the Attach operation.

Therefore, the running test retrieves the parameters for RRC,
Security, and ESM operations steps from memory, instead

of executing these steps, and move to the Attach operation.

At the Attach operation, the test searches whether the hash

value for the condition (IMSI) exists or not. Since it does not

exist, the test will execute all steps in the Attach operation

and proceeds to the next operation.

Note that, storing the leaf vertices and their parameters

with different hash conditions may grow the consumed mem-

ory size. To address this, we limit the number of tests that

can be traversed over a single graph. We can do so since only

a limited number of independent test cases exist within a

protocol function. For example, the Attach function supports

attach-related cases under three different scenarios (i.e., at-
tach/success, attach/failure, and attach/abnormal). They have

17, 23, and 11 test cases, respectively [1]. Consequently, the

graph data structure for the Attach function only needs to

store parameters associated with 23 different conditions.

Parallelizing test cases We further parallelize mutually

exclusive test cases to optimize the overall efficiency. Themu-

tually exclusive test cases are those testing different scenarios

but not sharing testing conditions, variables, and results with

each other. We take a two-step procedure: (1) enabling test

case concurrency, and (2) running concurrent tests in parallel.

The first step is relatively simple before test cases are exe-

cuted. We feed the complete list of test cases to our program,

which uses the switch() statement to differentiate tests based

on their three settings (i.e., success, failure, and abnormal).

The test cases for the same setting are grouped together. In

the second step, we execute tests in three different settings

in parallel. We take the process-oriented programming ap-

proach, based on ideas derived from CSP (Communicating

Sequential Processes) [24]. Each process is a separate piece

of code independent from others. Such a programming ap-

proach does not incur race hazards involving shared data,

scheduling corner cases, and deadlocks.

5 IMPLEMENTATION
Our implementation includes 3GPP test cases, our proposed

algorithms, and creation of FSMs and their representation as

finite automaton, the complete set of test cases by excluding

don’t care device outputs. Our implementation is highly

modular for better code re-use.

Test cases and their execution For 3GPP test cases, we

implement RRC, EMM and ESM cases as described by the

3GPP specification (36.523-1 [1] section series 8, 9 and 10).

We prototype each test case by following the procedure de-

scribed in the specification and run the test as a message

sequence between the device and the network. The device

and NS are two processes running on the Linux machine.

The device generates a message for NS, where NS produces

the response by following the standards. If the device does

not receive a response from NS (which is the typical case

in our protocol interaction testing), we mark it as vulner-

able/missing case and manually confirm it with the 3GPP

standards. Before each test starts, our program takes a set

of configurations defined from a number of config files as

required by the test case. We create different config files for

different purposes. For example, preamble.config, cells.config,
timers.config, ie.config, denote test start states, cell related
config, timers and their values, and information elements

with device capabilities, respectively.

Finite-state machine Each test case is executed such

that the execution is captured as a transition between dif-

ferent states. Such an implementation choice is important

to represent test cases as a finite automaton and generate

new test cases for inter-protocol communications. The cur-

rent states, next states, and transition conditions are enum
type values. For each state, the set of valid state transitions

are stored as a multimap. The transition function is an ac-

tion that the current state performs and migrates to the

next state. The action is basically a callback function that in-

forms which steps should be performed by the device and for

which next state (ActionCallbackFunc callback = stateTransi-
tion[std::pair(current_State, next_State)]). Using this logic, we
can easily represent our FSM as a finite automaton. In the

finite automaton, the current state is allowed to have more

than one transition (DFA or NFA). We modify the Hopfcroft

algorithm code provided by Antti Valmari [25], and define

contradictory states as equivalent states.

Protocol Interaction Protocol interaction is represented

as test case collisions and their interactions (with/without

delay), where each test represents the same or two different

protocols. Such interactions have to be tested on each valid

output value (in any sequence). To implement this, the mes-

sages that a case produces during testing, as well as their

corresponding responses, are placed in the queue. The execu-

tion of this test case is what the 3GPP testing standard mostly

assesses (i.e., single protocol interaction). To find protocol

interaction vulnerabilities, we let messages from two proto-

cols interact with the NS, and observe their behavior. Each

found vulnerability was manually verified with the 3GPP

protocol specifications. For each vulnerability, we propose a

new test case that describes the procedure (with the detailed

steps) and the fix (the expected behavior).

6 EVALUATION
6.1 Completeness
To evaluate test completeness, we seek to find how many

states our algorithm reduces when compared with the best-

known finite automaton algorithms. We also quantify how

many new caseswe can findwithout enumerating all possible

output sequences (results are in Table 1 of Section 3.5).For

algorithm comparisons, we vary the total number of NFA

Power Off/On RRC Security
Attach/Success 10 19 20
Attach Reject 6 99 52
Attach Abnormal 10 20 16
Combined Attach/Success 14 34 24
Combined Attach Reject 4 75 24
Combined Attach Abnormal 2 7 4

0

50

100

150

200

250

St
ep

s

Power Off/On RRC
Security ESM
Attach Detach
TAU Identity
Service Request

Attach/
Success

Attach/
Reject

Attach/
Abnormal

Combined
Attach/Succs

Combined
Attach/Rjct

Combined
Attach/Abnrm

Figure 9: No. of steps in Attach func.

0

20

40

60

80

100

120

140

Normal TAU Combined TAU Periodic TAU

St
ep

s

Power Off/On
RRC
Security
ESM
Attach
Detach
TAU
Identity
Service Request

Figure 10: No. of steps in TAU func.

0

50

100

150

200

250

St
ep

s

Power Off/On RRC Connection
RRC Reconfig RRC Re-establish
Paging Measurements
Handover TAU
Other NAS

Connct
Managmt

Connct
Reconfig

Intra RAT Inter RAT Radio Link
Failr

Figure 11: No. of steps in RRC func.

0
0.1
0.2
0.3
0.4
0.5
0.6

0.92 0.84 0.76 0.68 0.6

%
 R

ed
uc

ed

% Constraint increased

% States reduced
% Steps reduced

Figure 12: No. of constraint vs No. of
steps

states from 100 to 500, and assume half of them have 1 tran-

sition condition. In Section 3.3.1, we show that most NFA

states have only 1 transition condition in LTE. Table 4 com-

pares our algorithm with the Robins and Scott algorithm on

NFA to DFA conversation. The Robins and Scott algorithm

converts all NFA states to DFA. The number of steps and

states are exponential to the number of NFA states (to be con-

verted). After power set conversion, the algorithm converges

by removing unreachable states and the optimal number of

states can be obtained. However, the power set conversion

at the first step is the major bottleneck. On the other hand,

our algorithm only converts those NFA states that have 1

transition condition. We can reduce 1/3 of these NFA states

on average. Our algorithm makes NFA to DFA conversion

linear through selective state conversion at the cost of 10%

more states.

Table 5 compares the Hopcroft DFA minimization algo-

rithm with our proposed scheme. The Hopcroft algorithm

does not work on NFA-DFA mixed FSMs. We thus show the

DFA states only in Table 5. The Hopcroft algorithm cannot

benefit from constraints between different states. In con-

trast, our algorithm reduces more states by considering such

constraints. We find that, we reduce more states by adding

fewer constraints in the FSMs (as depicted by Figure 12).

Table 5 shows that, we can reduce 26% states by adding just

20% constraints. Moreover, our algorithm performs only 10%

more steps than the Hopcroft algorithm, where it skips NFA

minimization (an NP complete problem) and merges those

states with constraints (treating them as equivalent states).

Table 4: Our algorithm comparison with Robin and Scott algorithm

States Robin and Scott Algorithm Proposed Algorithm
NFA

(To-

tal)

1

Trans

NFA

DFA

(To-

tal)

Steps States Optimal

States

Steps Reduced

DFA

Total

States

100 50 100 2
200

2
200

167 600 34 184

200 100 200 2
400

2
400

334 1381 67 367

300 150 300 2
600

2
600

500 2230 100 550

400 200 400 2
800

2
800

667 3123 134 734

500 250 500 2
1000

2
1000

834 4049 167 917

6.2 Efficiency
We measure the efficiency of a test as the number of steps it

executes. The rationale is that, every test consists of a number

Table 5: Our algorithm comparison with Hopcroft algorithm

States Hopcroft Algorithm Proposed Algorithm
DFA
(Total)

Equivalent Constraints Steps States Steps States

100 50 20 400 75 440 56

200 100 40 921 150 1013 111

300 150 60 1487 225 1635 166

400 200 80 2082 300 2290 221

500 250 100 2699 375 2969 276

of test operations where every operation is executing a num-

ber of steps. Because these steps execute sequentially (one

after the other) in a case, their execution time contributes to

the testing time. We show that, we can efficiently execute

LTE test cases. Table 6 shows the test execution compari-

son between the ad hoc testing (used by the LTE standard)

and our system testing (through our solution). First, we see

that our approach executes 43%, 11%, 70% and 50% fewer

steps for the Attach, Detach, TAU, and Service Request func-
tions, respectively. This is because the graph data structure

shares a test execution knowledge with other tests. We did

not save much in the Detach function, because these tests

either require the device to reboot or the USIM to be re-

moved. Therefore, our graph data structure cannot hold the

information on previous tests and the steps in the new test

have to be re-executed. The savings from the Attach func-

tion are because our algorithm does not always execute the

reboot-device steps, unless explicitly mentioned. In the TAU
function, our algorithm executes 34 TAU related steps com-

pared with 375 steps in the 3GPP standard. We find that,

most TAU steps (including the same tracking area code and

other configurations) are repetitive. Their execution can be

avoided by simply retrieving the execution outcome from

the memory.

Figures 9, 10, and 11 show the number of steps taken at

different test cases in the Attach, TAU and RRC functions,

respectively. We can see that, the Attach function can be split

into 6 independent test scenarios, thus enabling their parallel

executions. Similarly, the TAU and RRC functions can be split

into 3 and 5 test scenarios, respectively, which can also run

in parallel. The Detach and Service Request functions (not
shown in the Figure) do not allow for any parallelism. Note

that, in the Detach function, “UE initiated" and “network

initiated" tests cannot be separated, because the device needs

to be physically rebooted. However, there is not much gain,

even if we can parallelize these functions. This is because

the Detach and service request functions have only 12 and 10

tests, respectively, compared with 51, 56 and 114 cases for
the Attach, TAU and RRC functions.

Table 6: Comparison of number of steps without (original in test case stan-
dard) and with our optimization approach (based on graph data structure)

Steps Before Optimization Steps After Optimization
Operation Attach Detach TAU SR Attach Detach TAU SR
Power Off/On 118 13 20 10 46 12 8 10

RRC 465 54 186 94 254 46 70 35

Security 216 40 164 28 140 32 60 16

ESM 100 14 54 12 68 14 26 8

Attach Req 195 13 68 16 65 11 15 7

Attach Success 130 18 70 28 68 16 34 8

Attach Reject 50 1 1 NA 47 1 1 NA

Detach 42 36 24 16 36 36 24 16

TAU 52 15 375 10 47 12 34 6

Identity Req/Resp 2 2 NA NA 2 2 0 NA

Service Req/Resp 8 2 20 26 4 2 16 14

Total 1378 208 982 240 777 184 288 120

7 RELATEDWORK
The LTE testing is still a relatively unaddressed topic in the

research community, particularly for its efficiency and com-

pleteness. Some early studies [26][27][28] have looked into

cellular protocol interactions from the performance stand-

point, whereas others [29][30] have examined practical at-

tacks over LTE. Other prior work [31][32][34] has discussed

the importance of performance or vulnerability related tests

for LTE. In contrast, we focus on the LTE testing in terms of

complete test cases and efficient test execution. Therefore,

we address a different and bigger problem scope to certain

extent.

There are also prior efforts on wireless or network related

testing. They include network protocol testing [35][36][37],

testing via model checkers [38][39][40], and test cases gen-

eration by learning queries [41] and finite state machines

[42][43]. Specifically, [35] tackles runtime wireless protocol

validations by sniffing wireless transmission first and adding

nondeterministic transitions later to incorporate uncertainty.

The presented technique does not address the NP complete-

ness in search and instead uses heuristics to limit the search.

[36] and [37] discuss the model based approach to NFV test-

ing and network fault detection, respectively. Both model the

network nodes as FSMs and generate test traffic for FSM exe-

cutions. However, [36] and [37] do not provide complete list

of test cases, nor discuss the efficiency of their approaches.

[38] and [39] verify the state-space exploration. They require

either constrained metrics as the input or going through all

system states. In this paper, we show that finding all possible

inputs is practically not feasible for LTE testing. [40] uses

model checking to find TCP implementation bugs, whereas,

while our work does not aim to find implementation bugs.

On general test design, early work [41] learns test cases

through learner and teacher interactions. In contrast, we

do not require the device to learn through interacting with

the network. Our approach finds valid input values through

device FSM transitions. [42][43] address the nondeterminism

of FSMs by keeping the input alphabet small, whereas our

scheme does not constrain the input alphabet.

8 CONCLUSION
In this paper, we present the first algorithmic approach

to LTE testing. Our scheme can offer the complete list of

test cases with multiple protocols interactions, and excludes

those cases whose corresponding output message combina-

tions are not generated in protocols interactions. We also

optimize LTE test cases by eliminating re-execution of repet-

itive steps among distinctive test cases. Our future work

will further look into test scenarios being developed for the

upcoming 5G technology, coexistence with other solutions

such as 4G and WiFi. We believe that our proposed approach

is also conceptually applicable to these new technologies.

ACKNOWLEDGEMENT
We thank our shepherd Dr. Sunghyun Choi and the anony-

mous reviewers for their insightful comments. This work

was partly funded by NSF grants 1423576 and 1526985.

REFERENCES
[1] 3GPP TS 36.523-1: Protocol conformance specification,

2018.

[2] Anite maintains LTE conformance testing lead.

http://www.anite.com/businesses/handset-testing/n

ews/anite-maintains-lte-conformance-testing-lead.

[3] Anritsu conformance test systems.

https://www.anritsu.com/en-US/test-measurement/m

obile-wireless-communications/conformance-test-s

ystems.

[4] Anite conformance test systems.

http://www.anite.com/businesses/handset-testing/our

-products.

[5] Anritsu: How conformance tests are carried out.

http://dl.cdn-anritsu.com/en-en/test-measurement/fil

es/Product-Introductions/Product-Introduction/me78

73la-el1100.pdf.

[6] Anite test documents.

http://www.keysight.com/en/pd-2372474-pn-E7515A/

uxm-wireless-test-set?pm=PL&nid=-33762.1078013

&cc=US&lc=eng.

[7] UE demonstration of conformance testing – Anite.

http://www.anite.com/businesses/handset-testing/our

-products.

[8] 3GPP implementation conformance statement.

http://www.etsi.org/deliver/etsi_ts/136500_136599/1

3652302/11.03.00_60/ts_13652302v110300p.pdf.

http://www.anite.com/businesses/handset-testing/news/anite-maintains-lte-conformance-testing-lead
http://www.anite.com/businesses/handset-testing/news/anite-maintains-lte-conformance-testing-lead
https://www.anritsu.com/en-US/test-measurement/mobile-wireless-communications/conformance-test-systems
https://www.anritsu.com/en-US/test-measurement/mobile-wireless-communications/conformance-test-systems
https://www.anritsu.com/en-US/test-measurement/mobile-wireless-communications/conformance-test-systems
http://www.anite.com/businesses/handset-testing/our-products
http://www.anite.com/businesses/handset-testing/our-products
http://dl.cdn-anritsu.com/en-en/test-measurement/files/Product-Introductions/Product-Introduction/me7873la-el1100.pdf
http://dl.cdn-anritsu.com/en-en/test-measurement/files/Product-Introductions/Product-Introduction/me7873la-el1100.pdf
http://dl.cdn-anritsu.com/en-en/test-measurement/files/Product-Introductions/Product-Introduction/me7873la-el1100.pdf
http://www.keysight.com/en/pd-2372474-pn-E7515A/uxm-wireless-test-set?pm=PL&nid=-33762.1078013&cc=US&lc=eng
http://www.keysight.com/en/pd-2372474-pn-E7515A/uxm-wireless-test-set?pm=PL&nid=-33762.1078013&cc=US&lc=eng
http://www.keysight.com/en/pd-2372474-pn-E7515A/uxm-wireless-test-set?pm=PL&nid=-33762.1078013&cc=US&lc=eng
http://www.anite.com/businesses/handset-testing/our-products
http://www.anite.com/businesses/handset-testing/our-products
http://www.etsi.org/deliver/etsi_ts/136500_136599/13652302/11.03.00_60/ts_13652302v110300p.pdf
http://www.etsi.org/deliver/etsi_ts/136500_136599/13652302/11.03.00_60/ts_13652302v110300p.pdf

[9] H. Gruber and M. Holzer. Computational Complexity

of NFA Minimization for Finite and Unary Languages.

LATA, 8:261–272, 2007.
[10] Y.-H. E. Yang and V. K. Prasanna. Space-time tradeoff in

regular expression matching with semi-deterministic

finite automata. In IEEE Infocom 2011.
[11] M. Sipser. Chapter 1: Regular languages. Introduction

to the Theory of Computation, pages 31–90, 1998.
[12] M. O. Rabin and D. Scott. Finite automata and their deci-

sion problems. IBM journal of research and development,
3(2):114–125, 1959.

[13] M. Sipser. Theorem 1.19 in Introduction to the Theory of
Computation, volume 2. Thomson Course Technology

Boston, 2006.

[14] F. R. Moore. On the bounds for state-set size in the

proofs of equivalence between deterministic, nondeter-

ministic, and two-way finite automata. IEEE Transac-
tions on computers, 100(10):1211–1214, 1971.

[15] K. Salomaa and S. Yu. NFA to DFA transformation for

finite languages. In International Workshop on Imple-
menting Automata, 1996.

[16] R. Mandl. Precise bounds associated with the subset

construction on various classes of nondeterministic fi-

nite automata. In Inf & Sys Sciences, 1973.
[17] J.-M. Champarnaud, A. Khorsi, and T. Paranthoën.

Split and join for minimizing: Brzozowski’s algorithm.

Stringology, 2002:96–104, 2002.
[18] Hopcroft. An/n log n algo for minimiz. states in kf in

ite automaton. 1971.

[19] M. Almeida, N. Moreira, and R. Reis. On the perfor-

mance of automata minimization algorithms. Logic and
Theory of Algorithms, page 3, 2007.

[20] Gómez and et al. DFA minimization: from Brzozowski

to Hopcroft. 2013.

[21] 3GPP. TS24.301: Non-Access-Stratum (NAS) protocol

for Evolved Packet System (EPS); Stage 3, Jun. 2018.

[22] 3GPP. TS36.331: Radio Resource Control (RRC), 2018.

[23] Anritsu: verification and test for deployment of LTE.

http://www.chinacom.tw/ngn2010/pdf/ngn/Anritsu.

pdf.

[24] Easy Concurrency for C++.

https://www.cs.kent.ac.uk/projects/ofa/c++csp/.

[25] DFA minimization using Hopcroft alogirithm: C++ im-

plementation.

http://www.cs.tut.fi/~ava/DFA_minimizer.cc.

[26] G.-H. Tu, Y. Li, C. Peng, C.-Y. Li, H. Wang, and S. Lu.

Control-Plane Protocol Interactions in Cellular Net-

works. In ACM SIGCOMM, August 2014.

[27] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao,

S. Sen, and O. Spatscheck. An in-depth study of LTE:

effect of network protocol and application behavior on

performance. In ACM SIGCOMM, 2013.

[28] C.-H. Chuang and et al. Performance study for HARQ–

ARQ interaction of LTE. Wireless Communications and
Mobile Comp., 10(11):1459–1469, 2010.

[29] Hussain, Syed Rafiul and Chowdhury, Omar and

Mehnaz, Shagufta and Bertino, Elisa. LTEInspector:

A Systematic Approach for Adversarial Testing of 4G

LTE. InNetwork and Distributed Systems Security (NDSS)
Symposium 2018, 2018.

[30] A. Shaik and et al. Practical attacks against privacy and

availability in 4G/LTE mobile communication systems.

2015.

[31] R. Subramanian, K. Sandrasegaran, and X. Kong. Bench-

marking of real-time LTE network in dynamic environ-

ment. In IEEE APCC, 2016.
[32] H. Zhao and H. Jiang. LTE-M system performance of

integrated services based on field test results. In IEEE
IMCEC, 2016.

[33] B. Cui, S. Feng, Q. Xiao, and M. Li. Detection of LTE

Protocol Based on Format Fuzz. In IEEE BWCCA, 2015.
[34] Gerasimenko and et al. Energy and delay analysis of

LTE-advanced RACH performance under MTC over-

load. In IEEE Globecom Workshops, 2012.
[35] Shi, Jinghao and Lahiri, Shuvendu K and Chandra, Ran-

veer and Challen, Geoffrey. Wireless protocol validation

under uncertainty. In International Conference on Run-
time Verification. Springer, 2016.

[36] Fayaz, Seyed Kaveh and Yu, Tianlong and Tobioka,

Yoshiaki and Chaki, Sagar and Sekar, Vyas. BUZZ: Test-

ing Context-Dependent Policies in Stateful Networks.

In NSDI, 2016.
[37] Lee, David and Netravali, Arun N and Sabnani, Krishan

K and Sugla, Binay and John, Ajita. Passive testing and

applications to network management. In International
Conference on Network Protocols. IEEE, 1997.

[38] Godefroid, and Patrice. Model checking for program-

ming languages using VeriSoft. In Proceedings of the
24th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, 1997.

[39] Khurshid, Sarfraz and Păsăreanu, Corina S and Visser,

Willem. Generalized symbolic execution for model

checking and testing. In International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2003.

[40] Fiterău-Broştean, Paul and Janssen, Ramon and Vaan-

drager, Frits. Combining model learning and model

checking to analyze TCP implementations. In Inter-
national Conference on Computer Aided Verification.
Springer, 2016.

[41] Dana Angluin. Learning Regular Sets from Queries and

Counterexamples. In IEEE Information and Computation,
1987.

http://www.chinacom.tw/ngn2010/pdf/ngn/Anritsu.pdf
http://www.chinacom.tw/ngn2010/pdf/ngn/Anritsu.pdf
https://www.cs.kent.ac.uk/projects/ofa/c++csp/
http://www.cs.tut.fi/~ava/DFA_minimizer.cc

[42] T.S. Chow. Testing Software Design Modeled by Finite-

State Machines. IEEE Transactions on Software Engineer-
ing, 1978.

[43] Petrenko, and Alexandre. Toward testing from finite

state machines with symbolic inputs and outputs. Soft-
ware & Systems Modeling, 2017.

	Abstract
	1 Introduction
	2 LTE Testing
	3 Test Completeness
	3.1 Limitations and Challenges
	3.2 Our approach
	3.3 LTE Testing as Finite Automata
	3.3.1 Reducing FSM States
	3.3.2 Minimizing FSM States

	3.4 Proof of Completeness
	3.5 Analysis

	4 LTE Testing Efficiency
	4.1 Limitations and Challenges
	4.2 LTE Testing as a Graph Data Structure
	4.2.1 Optimizing test cases

	5 Implementation
	6 Evaluation
	6.1 Completeness
	6.2 Efficiency

	7 Related Work
	8 Conclusion
	References

