
2468 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

LTE NFV Rollback Recovery
Muhammad Taqi Raza , Member, IEEE, Zhowei Tan, Ali Tufail , and Fatima Muhammad Anwar

Abstract—Network Function Virtualization (NFV) migrates
the carrier-grade LTE Evolved Packet Core (EPC) that runs
on commodity boxes to the public cloud. In the new virtual-
ized environment, LTE EPC must offer high availability to its
mobile users upon failures. Achieving high service availability
is challenging because failover procedure must keep the latency-
sensitive control-plane procedures intact during failures. Through
our empirical study, we show that existing recovery mechanisms
on the cloud and standardized LTE solutions are coarse-grained,
thus unable to quickly recover from failures. They incur LTE
service outage, lost network connectivity, and slow recovery.
To address these issues, we describe a new design for fault-
tolerant LTE EPC. It provides quick failure detection and timely
recovery from failed operations. To reduce failure detection
time, it leverages frequent retransmission of LTE control-plane
signaling within EPC as an indication of failure. To recover
from failure, it adopts a checkpointing based rollback recovery
approach in the LTE context and addresses the shortcomings
known in the classic checkpointing approach. Our design is LTE
standard-compliant and works as a plug-and-play without mod-
ifying existing LTE implementations. Our results show that this
approach can recover from the failure in 2.6 seconds and only
incurs tens of milliseconds of overhead.

Index Terms—NFV, availability, fault tolerance, telecommuni-
cation network reliability.

I. INTRODUCTION

LTE NETWORK must be highly available to provide its
mobile subscribers with services (voice, data, AR/VR,

and others). Telecom vendors have since promised high avail-
ability of five-nines by using their vender-specific solutions
over carrier-grade boxes. Each LTE “network function” is
developed by a single telecom vendor addressing specific
requirements of that network function. These vendors employ:
(a) hardware level mechanisms to tolerate occasional internal
components and modules failures; (b) software level tech-
niques to ensure redundancy, both for error detection and error
recovery; and (c) overly manager that ensures strong coupling
between underlying hardware and the software [1], [2].

Manuscript received 27 September 2021; revised 29 January 2022 and
28 May 2022; accepted 1 June 2022. Date of publication 10 June 2022;
date of current version 12 October 2022. This work was supported in part by
NSF under Grant CNS-205162, and in part by the Arizona TRIF Grant. The
associate editor coordinating the review of this article and approving it for pub-
lication was M. Tornatore. (Corresponding author: Muhammad Taqi Raza.)

Muhammad Taqi Raza is with the Information Systems Department,
University of Arizona, Tucson, AZ 85721 USA (e-mail: taqi@cs.ucla.edu).

Zhowei Tan is with the Computer Science Department, University of
California at Los Angeles, Los Angeles, CA 90095 USA.

Ali Tufail is with the School of Digital Science, University of Brunei
Darussalam, Gadong 1410, Brunei.

Fatima Muhammad Anwar is with the Department of Electrical and
Computer Engineering, University of Massachusetts at Amherst, Amherst,
MA 01003 USA.

Digital Object Identifier 10.1109/TNSM.2022.3182008

The Network Function Virtualization (NFV), however,
moves away from propriety solutions and brings LTE imple-
mentation over public clouds. Providing high LTE service
availability over general-purpose hardware and software plat-
forms is challenging [3], [4].

In this paper, we study the fault tolerance for the highly-
available LTE NFV. We first perform an empirical assessment
and reveal that current LTE and cloud-based mechanisms per-
form poorly during failures. Existing approaches cause LTE
service disruption, loss of network connectivity, and take tens
of seconds to recover LTE network service. These issues
emerge because existing NFV failure recovery solutions are
too coarse grained for LTE. These solutions periodically take
snapshots of the virtual machine and do not log LTE control-
plane signaling messages; hence fail to recover LTE service
during failover. Further, contemporary approaches rely on
heartbeat messages – implemented over cloud platform (such
as ZooKeeper [5]) and LTE protocols (such as SCTP [6]) –
to detect the failure. This is too slow for LTE control-plane
procedures, which timeout in a few seconds.

We next put forward our design to address slow failure
detection and inefficient failure recovery mechanisms in exist-
ing LTE-NFV. Our design exploits LTE specific information
to achieve high availability. To perform timely recovery, our
design proposes checkpoint based rollback recovery with
receive determinism algorithm. Because LTE control-plane
procedures have causality relationship (in which one mes-
sage triggers the execution of the other message and so on),
blocking mode execution (a device can initiate only one pro-
cedure at a time), and receive determinism (the same message
is replayed during rollback that was saved in checkpoint), our
design can mitigate the issues found in classical checkpointing
based rollback recovery approaches [7].

Finally, our design makes uses of available LTE path
management features in its advantage to provide a quick fail-
ure detection. It uses retransmission of signaling messages
within EPC as a prediction of failure and starts frequent
probing towards non-responding EPC NF to confirm the
failure.

We implement our design over OpenAirInterface [8],
an open-source LTE implementation. Our evaluation shows
that our approach: (1) detects the failure in approximately
2.5 seconds with no false positives, which is 4× improvement
over existing cloud mechanism, (2) reduces recovery time by
up to 6.5× compared to state-of-the-arts implementation, and
(3) incurs the negligible checkpointing overhead of tens of
milliseconds.

The scope of the paper is limited to NFV of LTE core
network (Evolved Packet Core). The network operators can use

1932-4537 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 06,2024 at 19:23:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1245-1151
https://orcid.org/0000-0003-4871-4080

RAZA et al.: LTE NFV ROLLBACK RECOVERY 2469

Fig. 1. LTE architecture over NFV: an overview.

existing radio infrastructure while moving their core network
functionalities over the cloud.

II. RELATED WORK

The most recent works on telecom–NFV related reliabil-
ity are [3], [9], [10], [11], [12], [13], [14]. Reference [9]
re-designs EPC architecture for public cloud deployment and
guarantees reliable LTE operations. The main idea of [9] is
to break EPC functionality into stateless and stateful compo-
nents. The stateful information is stored into highly reliable
storage that achieves the high availability. Contrary to [9],
our solution does not re-design LTE EPC architecture and
acts like plug-and-play with existing EPC architecture. It uses
rollback recovery in LTE context and recovers from fail-
ure. References [10], [11] consolidate the LTE processing
for fast execution of LTE procedures. References [3], [12]
provide reliability to IMS core by exploiting IMS domain
knowledge and refractoring IMS software modules to achieve
fault tolerance. References [3], [12] cannot recover LTE fail-
ures. References [13], [14] puts forward the need of reliable
LTE design in NFV. Our paper addresses these concerns by
providing fault tolerance to LTE procedures.

III. BACKGROUND

LTE network consists of three main components: User
Equipment (UE), evolved Node Base-station (eNodeB), and
Evolved Packet Core (EPC), as shown in Figure 1. The
eNodeB anchors as a radio interface between UE and EPC.
EPC communicates with packet data networks in the outside
world such as the Internet. The EPC is composed of a number
of Network Functions (NFs): the Serving Gateway (SGW), the
PDN Gateway (Packet Data Network Gateway or PGW), the
Mobility Management Entity (MME), the Home Subscriber
Server (HSS), and a few others. These LTE EPC NFs handle
control-plane and data-plane traffic through separate network
interfaces and protocols. As shown in Figure 1, the control-
plane traffic from radio network is sent to MME, whereas
data-plane traffic is forwarded to SGW. MME acts as a central
management entity that authenticates and authorizes UE, han-
dles device procedures (such as device registration, handover,
location update, and service provisioning), and maintains
SGW and PGW connections for data-plane traffic.

Network Function Virtualization (NFV) for 4G LTE:
In LTE–NFV, LTE software implementation is deployed
over cloud platforms. There exist a number of LTE

TABLE I
DOWNTIME ALLOWED FOR HIGH AVAILABILITY

software implementations that include OpenEPC [15],
OpenAirInterface [8], OpenLTE [16] and others that can
be deployed over cloud platforms, such as OpenStack [17],
OPNFV [18], vSphere [19], etc. The cloud platform acts as
a manager and provides virtualization of hardware resources
to LTE NFs. Softwarization of LTE NFs accelerates the
innovation by lowering operational and capital expendi-
tures [20], [21]. The network operators, such as Verizon [22],
Vodafone [23], SK Telecom [24], and others, are currently
considering to deploy LTE–NFV for existing and future 5G
applications.

IV. AVAILABILITY IN VIRTUALIZED LTE

The availability of LTE network is usually expressed as a
percentage of uptime in a given day, week or a year. Table I
shows the downtime that will be allowed for a particular per-
centage of availability, presuming that the system is required
to operate continuously. LTE networks are expected to achieve
five-nine (99.999%) high availability [25], [26]. This availabil-
ity is defined under the assumption of highly available channel
(i.e., the unavailability due to bad signals or no coverage is
not considered) [26], [27].

Failure Recovery Mechanisms Today: LTE network opera-
tors aim to provide all-time service access to their subscribers.
In order to provide end-to-end LTE services, LTE NFs must
be operative even during faults. Conventionally, carrier grade
LTE NFs employ sufficient mechanisms at their hardware
and software to tolerate faults and provide high availabil-
ity of network resources. These include Cisco ASR 5500
platform [1], Ericsson Blade System MkX platform [2],
Alcatel-Lucent 5620 SAM platform [28], Huawei’s ATCA
platform [29], and a few others. The NFV that moves away
from propriety solutions relies on 3GPP standard and cloud
platforms to meet high availability requirements.

Failure Model: Similar to these efforts [30], [31] we con-
sider the fail-stop failure, where under failure “the component
changes to a state that permits other components to detect
that a failure has occurred and then stops”. We focus on the
network function (NF) failures, in which the process of the
LTE functions (e.g., MME, S-GW/P-GW) crashes.

Scope: LTE–NFV efforts span on virtualizing LTE EPC [10]
and LTE radio access network [32]. In this paper, we limit our
scope on NFV of LTE EPC.

V. EMPIRICAL ASSESSMENT OF THE STATE-OF-THE-ARTS

In this section, we unveil the deficiencies of current cloud-
based (Section V-A), and LTE’s built-in failover mechanisms
(Section V-B). We summarize these deficiencies in Table II.
We discover that both mechanisms are insufficient for five-nine

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 06,2024 at 19:23:38 UTC from IEEE Xplore. Restrictions apply.

2470 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

TABLE II
SUMMARY OF LIMITATIONS OF EXISTING APPROACHES

LTE high availability in NFV. The causes are diverse, includ-
ing the mismatch between cloud and NF-level failure recovery,
coarse-grained recovery, long recovery time, and slow fail-
ure detections. They motivate us to devise new fault-tolerance
mechanisms.

Methodology: We run experiments on open source LTE plat-
form, OpenAirInterface [8]. We consider the shortest timer
values and best possible solutions available among (1) 3GPP
standard, (2) 3GPP-NFV documents, and (3) Cisco vendor
platform1 [6]. We do not assume hot-standby configuration, a
naïve solution used by the telecom industry to address fault
tolerance [33], [34], [35] in NFV, which is resource inefficient
and doubles the cost of the network [36], [37].

A. Deficiencies in Cloud-Level Recovery

We discover that existing cloud-based failure recovery
mechanisms are neither sufficient nor efficient for LTE control-
plane functions in NFV.

1) Coarse-Grained Failure Recovery: We find that the
existing cloud-based failure recoveries are coarse-grained and
thus potentially waste storage resource. We analyze both
the open-source platform (OpenStack), and the commercial
platform (VMware vSphere).
• OpenStack [38]: We find that OpenStack solutions for

compute-node’s high availability are immature and are still in-
progress [38]. Their solutions cannot recover the subscribers
session information during failure and require all UEs to re-
attach with the network after failure recovery.
• VMware vSphere [39]: It provides failure recovery mech-

anism through periodic snapshot. We find that vSphere’s
snapshot approach has several limitations and cannot be used
for delay sensitive LTE NFV failure recovery. First, when
it takes the snapshot, the entire state of the VM is freezed;
VMware calls this as stunned operation, and VM becomes
non-responsive [39]. Second, the snapshot requires complete
VM memory backup, even if there are few changes in the
memory since last snapshot. We show this in Figure 2 that
VMware snapshot approach takes at least 43,100 MBs for
backup purpose compared to the required (subscribers desired
states and variables for successful rollback recovery proce-
dure) 110 MB – which is at least 40× more expensive in
terms of storage space.

Impact The OpenStack detects the failure through heartbeat
messages (which are in the order of a couple of seconds [25])
and failure is recovered by assigning an alternative VM
instance. As a result, there is a long service disruption and loss

1The reason we chose Cisco as our vendor choice for comparison is that its
configuration and implementation specifications are available on the Internet.

Fig. 2. For failure recovery: VMware approach takes several thousands MBs
of snapshot, even though it is sufficient to backup only subscriber related
messages, states and variables of few MBs.

TABLE III
DOWNTIME PER DAY FOR LTE CONTROL-PLANE PROCEDURES. ONE

FAILURE PER DAY FOR EPC NF IS CONSIDERED

of network connectivity. Similar to OpenStack, the VMware
solution has two major impacts. First, VMware’s stunned oper-
ation [39] results into temporary LTE service disruption which
can take up to 60 seconds [40]. Second, there is a tradeoff
between frequency of snapshots and fine-grained recovery of
LTE failed procedures. LTE procedures require snapshots to
be taken at the granularity of milliseconds (as it takes few sec-
onds for one LTE procedure to conclude) which is not possible
with VMware approach.

Root Cause Current cloud systems do not provide fault
tolerance for session-level resilience. Even though, VMware
snapshot approach is available for cloud based service robust-
ness, it is designed for VM backup purpose rather than VM
applications’ high service availability.

Issue 1: State-of-the-art cloud based approaches are coarse-
grained and thus consume more storage resources.

2) Cloud Availability �= LTE NF Availability: We find that
the five-nine clouds today [25] can only ensure three and
half nine availability for LTE control-plane in NFV. Table III
shows the downtime of the cloud nodes and corresponding
LTE network functions (using OpenAirInterface [8]). Table III
shows the downtime per day for MME, SGW/PGW and HSS
under Attach Request, Tracking Area Update (TAU), and
Service Request (SR) LTE procedures. LTE failure recov-
ery time includes the time taken by cloud platform, LTE NF
bootstrap and connection setup time, and the time UE waits
for timeout to re-initiate the failed procedure. We can see
from Table III that the total user-perceived2 downtime for
Attach/TAU and SR is 10 seconds and 5 seconds, respec-
tively. Although the cloud’s downtime meets five-nine criteria,
the LTE control functions do not (as like the case of other
applications [41]): The bootstrap and connection setup time
for MME, SGW/PGW and HSS are 2 seconds, 1 second,
and 2.5 seconds, respectively. Further, these NFs need to wait
either 5 seconds or 10 seconds for SR or TAU/Attach request
procedure to be re-initiated from the device.

2The time after which the user device will re-initiate the failed procedure,
which is typically equivalent to LTE procedure timeout value.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 06,2024 at 19:23:38 UTC from IEEE Xplore. Restrictions apply.

RAZA et al.: LTE NFV ROLLBACK RECOVERY 2471

As a result, the high availability for LTE procedures are
‘three and a half nines’,3 even if the cloud platforms could
achieve five nines of infrastructure availability.

Root Cause: The cloud’s failure recovery only ensures high
availability at VM level, not NF level.

Issue 2: Cloud-level failure recovery is insufficient for
five-nine LTE control-plane, because of the network-side NF
interplays and device-side slow failure detections.

B. Deficiencies Rooted in LTE Design

We discover that LTE standardized mechanisms also bring
LTE service disruption during failure and loss of network
connectivity after failure recovery.

1) Loss of Network Connectivity After Failure Recovery:
LTE-NFV solutions from 3GPP (refer to 3GPP specification
reports that discuss scalable LTE-NFV architecture for reliabil-
ity [42], and end-to-end LTE-NFV reliability models [43]) are
coarse grained. When the failure occurs, VNF failure recovery
procedure selects an alternative VNF (that VNF does not have
UE contexts) [42], [43].

To quantify this, we consider SR procedure and bring
the fail-stop failure. Once the LTE service is back in about
32 seconds, an alternative MME takes charge of the failed
MME. The UE sends SR message, which is returned with
an error cause #9 (UE identity cannot be derived by the
network) (refer to 3GPP NAS specification section 5.6.1.5:
Service request procedure not accepted by the network [44]).
This has been shown in device side logs snapshot in Figure 4.

On receiving the service reject message, the UE enters into
the state EMM-DEREGISTERED and automatically initiates
the registration procedure. Once the device is registered with
LTE network, it can get the LTE service.

Impact There are several issues in LTE NFs restoration
procedure after failure. First, available LTE recovery mecha-
nisms result into loss of network connectivity. Second, EPC
NF failure is propagated to device which is against the phi-
losophy of fault tolerance [45]. Third, EPC relies on device to
recover from failure by performing re-registration procedure
with LTE network. Fourth, LTE control-plane failure not only
terminates any control-plane session, but data-plane traffic is
also aborted, where device initiates re-registration procedure
with LTE network.

Root Cause The standardized mechanisms are designed
by considering highly reliable EPC NFs (five-nine avail-
ability) where failure is only anticipated for vendor-specific
platforms that have built-in redundancy for fault toler-
ance [1], [2], [28], [29]. The 3GPP standards provide only
load balancing, load re-balancing [46] and service restora-
tion [47] mechanisms to distribute the workloads. It does not
standardize the LTE control-plane procedure level recovery
mechanisms.

Issue 3: Existing failure recovery brings loss of network
connectivity and results in termination of on-going data-plane
traffic.

2) Slow Failure Detection: We find that LTE recovery
mechanisms are also slow to detect the failure. As shown in

3Assuming good radio conditions with no radio failures.

Fig. 3. Slow failure detection results into LTE service disruption.

Fig. 4. Device side logs show that the service request was rejected on failure
recovery.

Figure 3, before any failure our MME has processing capacity
of handling 1,000 UEs (considering both their control and data
plane traffic). In our experiment, we launch LTE control-plane
procedures with LTE and stopped MME instance (imitating the
fail-stop failure of MME). As soon as the failure occurs (at
10th second), the MME stops responding LTE control-plane
signalling messages. The subscriber devices timeout and retry
their LTE procedures. They keep retrying until a response
is received to their requests. It takes them 32 seconds to
receive any response to their requests (when the VM has recov-
ered), after which the alternative MME serves the subscriber
requests.

Impact Slow failure detection has two major impacts.
First, the subscriber devices will go through service outage
during failure, which takes around 32 seconds. This value is
not acceptable for delay-sensitive LTE control-plane proce-
dures. The retry interval for Attach/TAU and SR procedures
are 10 seconds (timer T3411 [44]) and 5 seconds (timer
T3417 [44]), respectively.

Another major issue is that eNodeB receives higher signal-
ing load. All the devices retry for failed service (e.g., SR is
retried every 5 seconds) and bring signaling spikes at eNodeB.

Root Cause We find that 3GPP standard does not provide
explicit failure detection mechanism. Rather, it relies on com-
munication interfaces’ heartbeat to record the failure. When
MME goes down, the failure is detected by both eNodeB and
SGW. The eNodeB detects the MME failure through heartbeat
mechanism provided by SCTP protocol interface whose value
is 30 seconds (according to Cisco implementation [6]).

The SGW also detects the MME failure through path man-
agement procedure [10], [48]. The SGW takes 25 seconds
(timer T3-Response value choice by Cisco [49]) to detect the
MME failure and mark it unreachable. However, the SGW
cannot select an alternative MME and it relies on eNodeB
to assign a different MME from its MME pool [50]. This
new MME contacts SGW and starts serving the subscribers.
We should add that, although the cloud platforms provide
mechanisms (like ZooKeeper [5] or Pacemaker [51]) faster
than eNodeB failure detection through SCTP interface, these

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 06,2024 at 19:23:38 UTC from IEEE Xplore. Restrictions apply.

2472 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

solutions do not work in LTE, because no mechanism exists
in which an alternative MME can ask eNodeB to associate
with it.

Issue 4: Fail-stop failure detection is slow that causes
service disruption during failure.

VI. DESIGN RATIONALE AND OVERVIEW

A. Design Insights

We leverage the way LTE procedures get executed in design-
ing our solution. Before we describe our solution, we want to
highlight the key LTE specific design insights.

Messages Causality (I1): To execute one LTE procedure, EPC
NFs exchange messages with each other. All these messages
have causality relationship or happen-before relationship. That
is, a message m1 may causally affect another message m2,
if and only, if message m2 can only execute once message
m1 has been executed. This means, m1 happens before m2,
and forms a causality relationship as m1 → m2. For example,
in device attach procedure, the device is first authenticated
(authentication request, followed by authentication response
messages) at MME; thereafter, SGW creates device sessions,
when it receives create session request message from MME,
processes it and sends the create session request message to
PGW; the PGW processes the request (creates PDP context,
assigns bearers and QoS, and enables charging operation) and
replies create session response message to SGW; the SGW
replies create session response message to MME. All these
messages have happen-before relationship.

Device Procedures Execute in Blocking Mode (I2): We refer
to LTE NAS standard and find that LTE NAS procedures from
a device execute in blocking mode. That is, when one pro-
cedure is initiated by a device, it cannot initiate any other
procedure until the previous one results into success/failure.
Refer to Figure 5.1.3.2.2.7.1: EMM main states in the UE in
the NAS spec [44] that explains our insight through transitions
between procedures’ init states and device’s registered state.

Replay Messages are Receive-Deterministic (I3): LTE states
are non-deterministic where the non-determinism comes from
the decision logic and actions due to timers. However, it is not
the case for LTE signalling messages that need to be replayed
(when previously executed control-plane messages are resent
for failure recovery). The receiver will get the same message
that it has executed before, and it produces the same result sent
earlier. Therefore, we say that the replayed messages are deter-
ministic at receiver (that generates the same response message
which was sent earlier).

Split and Join Relationship of Concurrent Execution of
Messages (I4): Certain messages are allowed to execute con-
currently by LTE standard (they are not causally related
according to LTE standard), such as Authentication Request
and Security Mode command messages, TAU related and
Identity Request messages, and a few others (refer to message
collision at [44]). When the concurrency happens, the main
procedure execution splits into two parts; both parts execute
concurrently. Later, when both parts finish their tasks, they
join together and create one execution path again; afterwards
the rest of the messages are executed following happen-before

Fig. 5. Our design architecture.

relationship. Because we already know from the standard
which messages can be executed concurrently, we can employ
specific mechanism for those few messages.

LTE Path-Management Mechanism Retransmits Messages
on Timeout (I5): LTE EPC leverages its path-management
mechanism to retransmits GTP-C signalling messages in case
the receiver EPC NF does not respond in time. This retry
interval is calculated based on echo-request and echo-response
values between two EPC NFs [48]. We can leverage this
insight to quickly detect the failure.

B. Solution Overview

Solution Components: Our solution has two main com-
ponents: (a) retransmission-induced quick failure detection,
and (b) receive-deterministic rollback recovery through check-
pointing on failure.

Our design architecture is shown in Figure 5. During
normal working, every NF independently takes periodic check-
points. Every checkpoint saves subscribers session states,
control-plane procedures’ messages and their execution, and
NF configurations, since preceding checkpoint into highly
reliable HSS database [52], [53], [54], [55]. Our solution lever-
ages LTE control-plane messages retransmission mechanism
between two EPC NFs to predict the failure, in case one NF
stops responding the control-plane signalling messages. The
predicted failure is reported to recovery engine. The recovery
engine confirms the failure by frequently probing the non-
responding NF. If failure is confirmed, it replaces the failed
NF with an alternative one. The alternative NF retrieves the
last saved checkpoint and rollbacks to that checkpoint. Then
it replays the control-plane messages to reach the state at
which the failure has occurred. Once all the recorded mes-
sages are replayed, the halted control-plane procedures resume
without breaking the connectivity. Our solution addresses the
shortcomings of existing failure recovery mechanisms (as dis-
cussed in Section V). Our approach takes periodic checkpoints
to provide failure resilience. These checkpoints only record
LTE specific information instead of complete VM snapshot,
addressing issue 1. Our solution makes use of LTE path
management mechanism to quickly detect the failure and
solves issue 4. After failure detection, the failed LTE control-
plane procedures are quickly restored by rolling back to the
last saved checkpoint and replaying the checkpoint messages,
solving issues 2 and 3.

VII. DESIGN

We put forward a design to achieve efficient LTE control-
plane rollback recovery, and quick failure detection.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 06,2024 at 19:23:38 UTC from IEEE Xplore. Restrictions apply.

RAZA et al.: LTE NFV ROLLBACK RECOVERY 2473

Fig. 6. Service request as an example. Every EPC NF will take its checkpoint
independent from other NFs. Before/after sending/receiving messages every
NF may have some internal execution of messages (not shown in the Figure).
In this Figure, we only show the SR as message exchange.

A. Enabling LTE Control-Plane Rollback Recovery

We first brief the limitation of existing available rollback
recovery mechanism in LTE context. Thereafter, we discuss
our approaches of communication-induced checkpointing and
receive-deterministic rollback recovery.

1) Limitation of Existing Rollback Recovery Mechanism:
Conceptually, the simplest solution is that different LTE NFs
take their checkpoints more or less independently. When a failure
occurs, the LTE NF is rolled back to the latest checkpoint and
resumes the LTE failed control-plane procedure. However, this
simple approach can cause the domino effect during rollback
recovery [56]. The domino effect appears when a subset of
LTE NFs, which have to be resumed after a failure, rollback
unboundedly while determining a set of mutually consistent
checkpoints among all NFs. In the worst case, all the NFs
have to roll all the way back to the beginning (the first most
checkpoint when these NFs started) [56]. We find that in LTE
context the domino effect can be even worse, where it can take
the rollback recovery to the first most checkpoint, when the
device was initially registered – days or even weeks before
the failure.

Service Request Procedure as an Example: We understand
the domino effect during rollback in LTE by using LTE SR
control-plane procedure as an example. As shown in Figure 6,
assume the failure at SGW occurs after sending message m5

and just before receiving message m8. The SGW rolls back
to its last checkpoint (which is in between messages m4 and
m5). From SGW point of view, the message m5 was never
sent (as the checkpoint was taken before message m5 was
sent); whereas from PGW point of view, m5 was sent by SGW
and it has progressed towards message m8. These inconsisten-
cies between SGW and PGW bring the phenomena of orphan
messages – the messages which are not mutually claimed by
any two NFs, and cannot establish send/receive relationship.
Furthermore, SGW will not re-send the message m5 because
it requires message m4 to be received before sending m5. To
deal with this problem, protocols based on checkpointing force
the orphan messages NFs (i.e., PCRF and PGW) to rollback
to the checkpoint preceding the orphan messages reception.
This rollback may trigger more rollbacks at other NFs (such
as MME) to find the consistent global state. In the worst case,
all NFs end up rolled-back to their initial checkpoints. This
initial state might be the start of LTE EPC NFs that means no
control-plane procedure was ever executed.

Furthermore, this approach can lead to storage overhead
in which all the checkpoints need to be saved because the

Algorithm 1: Checkpointing for LTE Control-Plane Procedures
UESessions = Session states of all devices;
NFConfigs = NFj configurations;
UEProcMsgs = Messages of all procedures of devices;
Let CkPt = UESessions + NFConfigs + UEProcMsgs;
if the concurrent messages execution is starting for procedurek then

Take checkpoint (CkPti) at NFj ;
SEND (i , NFj , CkPti) to HSS;

if the concurrent messages execution has finished for procedurek then
Take checkpoint (CkPti) at NFj ;
SEND (i , NFj , CkPti) to HSS;

if certain time has passed at NFj then
Take checkpoint (CkPti) at NFj ;
SEND (i , NFj , CkPti) to HSS;

end

recovery procedure could rollback to the first most checkpoint
(i.e., due to domino effect). In this paper, we use LTE specific
insights and design our checkpointing and rollback recovery
algorithms that solve the domino effect without requiring dif-
ferent NFs to coordinate to do checkpointing (solutions that are
considered to address domino effect problem [7], [56], [57]).

2) Our Checkpointing and Rollback Recovery Mechanisms:
Independent checkpointing In our approach, every NF takes
its own checkpoint whenever it wants. Our checkpointing
approach does not put any restriction on NF regarding when it
should take a checkpoint and how many checkpoints should be
taken in a given period of time; except the case of concurrent
messages execution. To make sure that after failure the concur-
rent messages execution are replayed exactly in the same order
as they were executed before the failure, our approach ensures
either all of the concurrent messages will be re-executed or
none during rollback recovery. To achieve this, our approach
puts a forced checkpoint as soon as the concurrent messages
execution starts, and takes another forced checkpoint when the
concurrent execution stops. It means we isolate the execution
block of concurrent messages execution. Our approach can do
so because of split and join phenomena to achieve concurrency
(Insight: I4). To take an example, when concurrency happens
in LTE control-plane procedure, the main thread responsible
of executing LTE procedure creates a new thread() (i.e., child
thread) and delegates mutually exclusive part of procedure’s
execution to the child thread. This is the point where the pro-
cedure execution splits. Both parent and child threads execute
the part of procedure independently. When the child thread has
finished its task, it joins() with the parent thread and afterwards
the parent thread executes the rest of the procedure. Because
we can easily know when the procedure is being split() and
join(), we can enforce the checkpoint (Insight: I4).

We propose that all checkpoints should be stored in HSS
database. We believe that HSS database is critical com-
ponent of LTE that hosts all subscribers related records
and their location information, and is available at all time.
The cloud operators have extra mechanisms to provide high
availability of those database records. This assumption is
consistent with both industry and academic research commu-
nities [52], [53], [54], [55].

Checkpointing algorithm We explain our checkpointing
procedure through Algorithm 1. The checkpoint is mainly

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 06,2024 at 19:23:38 UTC from IEEE Xplore. Restrictions apply.

2474 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

TABLE IV
EXAMPLE OF INFORMATION TO BE SAVED DURING CHECKPOINTING

taken when the procedure is being split or join or certain
time has passed. Every checkpoint mainly saves the following
three key records (instead of taking complete VM snapshot –
discussed in issue 1): (1) device-specific session states, (2)
NF configurations, and (3) device control-plane procedures
and their messages. We summarize desired checkpointing
information in Table IV.

States consistencies after rollback recovery Our check-
pointing rollback recovery solution can simply replay the
messages one by one (Insights: I1 and I2). It avoids the domino
effect by ensuring that all states remain consistent after fail-
ure. We have three key ideas to achieve this. First, the LTE
messages to be replayed during rollback are “receive deter-
ministic” (Insight: I3). That is, the receiver of the replayed
messages knows that these messages were executed before.
Therefore, instead of actually re-executing those messages, the
receiver NF simply produces the same response that was gen-
erated earlier. The second idea is that we let the alternative
NF re-send the message on timeout (i.e., the orphan message
will eventually be re-sent on timeout). This ensures that all
of the checkpoints messages will eventually be replayed and
bring EPC NFs to consistent state. The third key idea is about
handling of the message that is perceived to be not sent by
alternative NF. This is the case when alternative NF recov-
ers quickly and receives the response of the message that was
sent before the failure. Because the alternative NF rolls back
to previous checkpoint (that does not capture that sent mes-
sage), this response message brings states inconsistencies. Our
solution is that the alternative NF should discard such mes-
sage – the future message in the past state. This message will
eventually be recovered during rollback recovery.

Checkpoint replay algorithm We explain our checkpoint-
ing procedure as shown in Algorithm 2. The while() loop
ensures that all checkpoint messages are replayed. On each
iteration (the first for() loop), we check whether the message
was sent earlier or not. If it was not sent during rollback then
this message is immediately resent, otherwise the message is
sent on timeout. The second for() loop checks all messages
that are received from the neighboring NF. If we receive the
response of the message that has not been sent (according to
checkpoint), then we discard the received response message.
Once all the messages are replayed, the system reaches to the
state at which the failure has occurred and the control-plane
procedure progress has halted. This is a consistent state among
all EPC NFs; and the halted procedures can start progressing
again (solving issues 2 and 3).

B. Quick LTE Failure Detection

Limitation of existing failure detection mechanism In
order to provide high LTE availability, it is important that the

Algorithm 2: Receive-Deterministic Rollback Recovery Through
Checkpointing
An alternative NF assigned; Checkpoints are read; and UE sessions restored;
Let CkPt = UEProcMsgs;
while all messages are not replayed from CkPt do

for each neighboring NF, NFj do
if CkPti is a message to be resent then

compute SENTi→j (CkPti);
send a Rollback (i , SENTi→j (CkPti)) message to NFj ;

else if CkPti is a message that was not sent then
Let message timeout happen;
compute SEND_ON_TIMEOUTi→j (CkPti);
send a Rollback (i , SEND_ON_TIMEOUTi→j (CkPti))
message to NFj ;

end
for every Rollback(j , c) message received from a neighbor NFj do

if RCVDi←j (CkPti) > c then
Discard received message;
compute SENTi→j (CkPti);
send a Rollback (i , SENTi→j (CkPti)) message to NFj ;

end
end

failure is quickly detected. We refer to Section V and recall
that both cloud platform and LTE standardized mechanisms
are slow and can take tens of seconds to detect the failure
(issues 2 and 4). To address this limitation, we provide our
retransmission-induced quick failure detection approach.

Retransmission-induced quick failure detection Our fail-
ure detection solution exploits the LTE signalling messages
for failure prediction and quick failure detection. LTE uses
GTP-C signalling messages for control-plane path manage-
ment, tunnel management and for mobility management [48].
We argue that these messages can also be used for quick fail-
ure detection (Insight: I5). To take an example, when MME
sends create session request to SGW, and it does not receive
a response message (create session response) within a cer-
tain amount of time; it will re-send that signalling message
(create session request). The retry interval is in the order of
a few milliseconds [10]. MME will keep sending create ses-
sion request message until the SGW failure is detected by
GTP path management heartbeat timer expiration or the device
times-out and re-initiates the control-plane procedure. We pro-
pose to leverage no-response of the signalling messages as a
prediction of failure. The NF predicted to be experiencing a
failure will be further probed to confirm the prediction; and
the failover procedure can start, thereafter, if the failure has
been confirmed.

Failure detection algorithm We explain our failure detec-
tion solution using Algorithm 3. Our approach is to launch
a monitoring thread, Tmonitor , in every NF that monitors
whether the other peer has provided the response to GTP-C
signalling message or not.4 Note that, it is sufficient to moni-
tor the signalling messages transmission of any single device.
This is because peer NF fail-stop failure for one device is the
failure for all devices that are communicating with the failed

4To detect the failure between MME and HSS, Tmonitor monitors
the pending message queue that significantly increase during failure,
see [58, Sec. 5.5.4].

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 06,2024 at 19:23:38 UTC from IEEE Xplore. Restrictions apply.

RAZA et al.: LTE NFV ROLLBACK RECOVERY 2475

Algorithm 3: Quick LTE Failure Detection
Tmonitor = Monitoring thread;
Pthread = Probing thread;
Tmonitor finds the re-transmission of signalling message(s) from NFi to
NFj ;
if Tmonitor finds signalling re-transmission more than threshold then

Mark NFj as failure prone;
Report NFj to Recovery Engine;

if Recovery Engine receives a marker from Tmonitor then
Create a new thread Pthread ;
while NFj is not probed for certain times do

Pthread keeps probing NFj ;
end
if Pthread does not receive a response from NFj for certain number
of probes then

Start Rollback recovery (Algorithm 2);
end

peer NF. When monitoring thread does not find the signalling
message response for certain number of retries (5 retry attempts
in our implementation), it marks the non-responsive peer NF
as failure-prone. Tmonitor then notifies the failure-prone NF to
recovery engine. On receiving the failure prediction message,
the recovery engine creates NF specific thread, Pthread, and fre-
quently probes the failure-prone NF. If Pthread does not receive
the response for certain number of retries then the probed NF
will be declared as failed. Thereafter, the failure recovery will
start using our rollback recovery mechanism (Algorithm 2).

VIII. IMPLEMENTATION

In our implementation, we use OpenAirInterface (OAI) [8],
an open source LTE platform to implement EPC functionality
according to 3GPP standard. The OAI provides basic imple-
mentation of EPC NFs (such as MME, SGW/PGW, and HSS)
that can be deployed over Unix-based platforms like Linux,
BSD or Solaris.

We modified EPC NFs network config, and network
interfaces files to ensure MME should be able to commu-
nicate with more than one SGW NF to perform fail-over.
We modify the SCTP implementation to enable SCTP maxi-
mum number of retransmissions, timeouts according to Cisco
implementation [6]. We enhance the path management imple-
mentation of OAI by ensuring the retransmission of packets are
done according to GTP-C tunneling protocol [48], and use the
GTP-C timer values as defined by Cisco implementation [49].

Implementation of Proposed Design: Our implementation
has a recovery engine that consists of (a) checkpoint man-
ager: prepares an alternative NF and asks that NF to retrieve
the desired checkpoint during failover, and (b) failure detec-
tor: runs Pthread and probes the NF which is predicted to
be failed. We implement a separate middleware (we call it
stub) along side EPC NFs. The stub has three main compo-
nents (i) checkpoint agent: responsible for taking checkpoints,
(ii) local monitor: runs the failure prediction thread, Tmonitor,
and (iii) virtual replayer: generates the messages from the
cache when its peer NF is performing rollback recovery.

IX. EVALUATION

We evaluate the fault-tolerance mechanisms of our proposed
approach. We run our tests and collect experiment results on

Fig. 7. Failure detection time comparison.

TABLE V
RELAXING THE FAILURE PREDICTION AS RETRANSMISSION TIME IN

PATH MANAGEMENT LEADS TO NO FALSE POSITIVE

Ubuntu Server 14.04.3 LTS as virtualized instance running
on Intel Core i7 3517U Processor x 2 with maximum turbo
frequency of 3.00 GHz, 4 MB SmartCache and 6 GB DDR3
RAM. We discuss our results regarding (1) failure detection,
(2) failure recovery, (3) overhead. Finally, we briefly discuss
overall failure recovery and high availability of our design.

A. Failure Detection

How quickly we detect the failure? To find out how quickly
our approach can detect the failure, we initiate the control-
plane procedures and let one of the EPC NF crash. The
monitoring thread (Tmonitor) counts five number of retrans-
missions and reports the failure prediction to recovery engine.
The probing thread (Pthread) at recovery engine probes the
failure-prone NF at fixed interval of 500 milliseconds for 5
number of retries. Thereafter, the failure is confirmed. Figure 7
shows that on average our approach can detect the failure in
about 2.7 seconds; and in 3.5 seconds for 80% of the cases
when compared to the baseline approach (implementing 3GPP
standardized timers and operations). At worst case, it takes
about 4.9 seconds to detect the failure. This is mainly due
to the varying retransmission in LTE path management due
to network congestion (i.e., echo request and response take
longer if one of the peer NF is severely congested).

False positives? Our failure prediction relies on the num-
ber of re-transmissions between two EPC NFs (we consider
5 retransmissions to be treated as failure prediction). This
retransmission value is calculated from LTE path management
technique.5 If we consider the number of retransmissions as it
is (calculated based on path management value), our approach
can bring up to 12.4% of false positives,6 as shown in Table V.
However, when we relax our failure prediction by doubling
the time retransmission is being happened then we can sig-
nificantly reduce the false positives to 3.8%. We can reduce
false positives to zero if we exponentially back-off the time
retransmission is being happened in order to predict the fail-
ure. In our result, we have achieved zero false positive on 2nd

time back-off.

5echo-req/echo-resp value plus some alpha (we set it to be 20% of echo-
req/echo-resp value).

6We observe these false positives when our EPC NF is overloaded and
some of the response messages take unusually long time.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 06,2024 at 19:23:38 UTC from IEEE Xplore. Restrictions apply.

2476 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 8. Failure recovery time comparison.

Fig. 9. Time overhead of keeping checkpoints.

Fig. 10. Breakdown of latency overhead for keeping checkpoints.

B. Failure Recovery

How quickly we recover from failure? Figure 8 shows the
comparison of failure recovery between our approach and the
baseline when SR and Attach/TAU control-plane procedures
are used. In baseline, the device’s control-plane procedure
always times-out – costing 5 seconds for SR and 10 seconds
for Attach/TAU case – before recovering the failure (through
re-attach). In contrast, our approach can take a few hundred
milliseconds to recover from the failure by using our rollback
recovery mechanism. In our approach, the recovery engine
instructs the alternative VM (in cold-standby) to read the logs
from the stable storage, and then the alternative NF simply
replays the logs. Because these logs are being replayed using
virtual replayer, it does not incur radio transmission delays
during failure recovery.

1) Negligible Overhead: Checkpointing operation over-
head during normal working Our design is required to take
periodic checkpointing so that it could rollback and replay the
checkpoint logs during failure recovery process. We show that
our checkpointing approach does not have much overhead on
LTE control-plane procedures before failure. Figure 9 shows
the overhead for Attach Request control-plane procedure. The
reason we consider Attach Request is that attach procedure
requires more number of signalling messages exchange com-
pared to SR and TAU. As we can see from Figure 9, our
checkpointing approach only costs up to 50 milliseconds of
overhead for LTE control-plane procedure. The overhead of
50 milliseconds is small when compared to overall timeout
value of 5,000 milliseconds for SR, and 10,000 milliseconds
for Attach/TAU procedures.

Latency breakdown during checkpointing Figure 10 shows
the latency break down as micro benchmark for checkpoint-
ing before failure. We consider the authentication process (that

includes the rounds of communication with HSS to retrieve
authentication vector), ciphering process, and session creation
process (that includes assigning IP address and setting-up QoS,
etc.). We can see from Figure 10 that on average our check-
pointing approach just adds tens of milliseconds (i.e., 5%
to 30%) more processing while executing LTE control-plane
procedure.

X. CONCLUSION

This paper studies the high availability of LTE control-
plane procedures in NFV. Our paper addresses three critical
challenges in providing high availability in LTE: fast failure
detection, recovering the lost states and messages, and incur-
ring less overhead. By leveraging LTE specific design insights
we have solved these challenges. The failure is detected
through LTE packets retransmission and probing, only when
it is required. The failed control-plane procedures are restored
through checkpointing and rollback recovery mechanisms.

REFERENCES

[1] “Cisco ASR 5500: Elastic Packet Core Network From Cisco.”
[Online]. Available: https://www.cisco.com/c/en/us/products/wireless/
asr-5500/index.html (Accessed: May 28, 2022).

[2] “Ericsson Blade System (EBS) for EPC.” [Online]. Available: https://
www.ericsson.com/ourportfolio/digital-services-solution-areas/sgsn-
mme?nav=fgb_101_09%7Cfgb_101_256 (Accessed: May 28, 2022).

[3] M. T. Raza and S. Lu, “Enabling low latency and high reliability for
IMS-NFV,” in Proc. IEEE CNSM, 2017, pp. 1–9.

[4] A. Carbonari and I. Beschasnikh, “Tolerating faults in disaggregated
datacenters,” in Proc. ACM HotNets, 2017, pp. 164–170.

[5] “Apache ZooKeeper.” [Online]. Available: https://zookeeper.apache.org
(Accessed: May 17, 2022).

[6] “CISCO—SCTP Parameter Template Configuration Mode Commands.”
[Online]. Available: https://www.cisco.com/c/en/us/td/docs/wireless/
asr_5000/20/CLI/books/R-Z/20_R-Z_CLI-Reference/20_R-Z_
CLI-Reference_chapter_010110.pdf (Accessed: May 28, 2022).

[7] G. Cao and M. Singhal, “On coordinated checkpointing in dis-
tributed systems,” IEEE Trans. Parallel Distrib. Syst., vol. 9, no. 12,
pp. 1213–1225, Dec. 1998.

[8] “Open Source LTE Platform.” [Online]. Available: http://www.openair
interface.org (Accessed: May 28, 2022).

[9] H. Jiang, N. Choi, M. Thottan, and J. Van der Merwe, “FestNet: A
flexible and efficient sliced transport network,” in Proc. IEEE 7th Int.
Conf. Netw. Softwarization (NetSoft), 2021, pp. 97–105.

[10] M. T. Raza, D. Kim, K.-H. Kim, S. Lu, and M. Gerla, “Rethinking LTE
network functions virtualization,” in Proc. IEEE ICNP, 2017, pp. 1–10.

[11] Z. A. Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker,
“A high performance packet core for next generation cellular networks,”
in Proc. ACM SIGCOMM, 2017, pp. 348–361.

[12] M. T. Raza, H.-Y. Tseng, C. Li, and S. Lu, “Modular redundancy for
cloud based IMS robustness,” in Proc. ACM MobiWac, 2017, pp. 75–82.

[13] M. T. Raza, F. M. Anwar, D. Kim, and K.-H. Kim, “Highly available
service access through proactive events execution in LTE NFV,” IEEE
Trans. Netw. Service Manag., vol. 18, no. 3, pp. 2531–2544, Sep. 2021.

[14] G. Ilievski and P. Latkoski, “Experimental evaluation of network
packet latency within a distributed NFV infrastructure,” in Proc. 29th
Telecommun. Forum (TELFOR), 2021, pp. 1–4.

[15] “Open EPC—Software LTE Implementation.” [Online]. Available: http:/
/www.openepc.net/ (Accessed: May 28, 2022).

[16] “OpenLTE: Open Source LTE Implementation.” [Online]. Available:
http://openlte.sourceforge.net (Accessed: May 28, 2022).

[17] “OpenStack Open Source Cloud Computing Software.” [Online].
Available: https://www.openstack.org/software/ (Accessed: May 17,
2022).

[18] “Open Platform for NFV (OPNFV).” [Online]. Available: https://www.
opnfv.org/ (Accessed: May 17, 2022).

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 06,2024 at 19:23:38 UTC from IEEE Xplore. Restrictions apply.

RAZA et al.: LTE NFV ROLLBACK RECOVERY 2477

[19] “NF Virtualization Using VMware’s vSphere: The Efficient and Secure
Platform.” [Online]. Available: https://www.vmware.com/products/
vsphere/features/ (Accessed: May 17, 2022).

[20] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[21] “Bringing Network Function Virtualization to LTE.” Nov. 2014.
[Online]. Available: http://www.4gamericas.org/files/1014/1653/1309/
4G_Americas_-_NFV_to_LTE_-_November_2014_-_FINAL.pdf

[22] “Boost Agility with Virtual Networks that Deliver Quickly on
Demand.” [Online]. Available: http://www.verizonenterprise.com/
products/networking/sdn-nfv/virtual-network-services/ (Accessed:
May 28, 2022).

[23] “Exploring the Opportunities in NFV.” [Online]. Available: http://www.
vodafone.com/business/group-enterprise/software-defined-networking-
and-network-function-virtual (Accessed: May 28, 2022).

[24] “SK Telecom Creates Its Own in-House NFV MANO.” [Online].
Available: https://techblog.comsoc.org/tag/sk-telecom/ (Accessed:
May 28, 2022).

[25] B. H. Nguyen et al., “A reliable distributed cellular core
network for public clouds,” Microsoft Res., Redmond, WA, USA,
Rep. MSR-TR-2018-4, Feb. 2018.

[26] “High Availability is More Than Five Nines.” [Online]. Available:
https://archive.ericsson.net/service/internet/picov/get?DocNo=10/28701-
FGB101256&Lang=EN&HighestFree=Y (Accessed: May 28, 2022).

[27] A. Elmokashfi, D. Zhou, and D. Baltrunas, “Adding the next nine: An
investigation of mobile broadband networks availability,” in Proc. ACM
Mobicom, 2017, pp. 88–100.

[28] “Alcatel-Lucent 5620 SAM.” [Online]. Available: http://www.pexx.net/
pdfs/whitepapers/alcatel_lucent/mpr9500/EPC_Solution_wp_0309.pdf
(Accessed: May 28, 2022).

[29] “Huawei eCNS300 Solution for EPC.” [Online]. Available: http:/
/m.huawei.com/enmobile/enterprise/products/wireless/gsm-r/gsm-r/
hw-200203.htm (Accessed: May 28, 2022).

[30] J. Sherry et al., “Rollback-recovery for middleboxes,” in Proc. ACM
SIGCOMM, Aug. 2015, pp. 227–240.

[31] E. Zhai, R. Chen, D. I. Wolinsky, and B. Ford, “Heading off corre-
lated failures through independence-as-a-service,” in Proc. OSDI, 2014,
pp. 1–19.

[32] X. Foukas, M. K. Marina, and K. Kontovasilis, “Orion: RAN slicing for
a flexible and cost-effective multi-service mobile network architecture,”
in Proc. ACM Mobicom, 2017, pp. 127–140.

[33] “Alcatel-Lucent Virtualized EPC Delivering on the Promise of NFV and
SDN.” [Online]. Available: http://www.tmcnet.com/tmc/whitepapers/
documents/whitepapers/2014/10743-alcatel-lucent-virtualized-epc-
delivering-the-promise-nfv.pdf (Accessed: May 17, 2022).

[34] “Ericsson Virtual Router.” [Online]. Available: https://archive.
ericsson.net/service/internet/picov/get?DocNo=1/28701-FGB1010557&
Lang=EN&HighestFree=Y (Accessed: May 28, 2022).

[35] “OPNFV—Building Fault Management into NFV Deployments.”
[Online]. Available: https://www.opnfv.org/wp-content/uploads/sites/12/
2016/11/opnfv_faultmgt_final.pdf (Accessed: May 28, 2022).

[36] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network func-
tions: Breaking the tight coupling of state and processing.” in Proc.
NSDI, 2017, pp. 97–112.

[37] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A high
availability framework for middleboxes,” in Proc. ACM Symp. Cloud
Comput., 2013, p. 1–15.

[38] “Configuring the Compute Node—Work is in Progress.” [Online].
Available: https://docs.openstack.org/ha-guide/compute-node-ha.html
(Accessed: May 28, 2022).

[39] “Understanding VM Snapshots.” [Online]. Available: https://kb.vmware.
com/s/article/1015180 (Accessed: May 28, 2022).

[40] “VMWare Virtual Machines Become Unresponsive for Over 30
Minutes.” [Online]. Available: https://kb.vmware.com/s/article/2039754
(Accessed: May 28, 2022).

[41] J. Kim, K. Salem, K. Daudjee, A. Aboulnaga, and X. Pan, “Database
high availability using SHADOW systems,” in Proc. ACM Symp. Cloud
Comput., 2015, pp. 1–13.

[42] “Report on scalable architectures for reliability management,” ETSI,
Sophia Antipolis, France, document GS NFV-REL 002, 2017.

[43] “Network functions virtualisation (NFV); reliability; report on models
and features for end-to-end reliability,” ETSI, Sophia Antipolis, France,
document GS NFV-REL 003, 2017.

[44] Non-Access-Stratum (NAS) Protocol for Evolved Packet System (EPS);
Stage 3, 3GPP Standard TS 24.301, Jun. 2013. [Online]. Available: http:/
/www.3gpp.org/ftp/Specs/html-info/24301.htm

[45] C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro, “Dynamic error
handling in service oriented applications,” Fundamenta Informaticae,
vol. 95, no. 1, pp. 73–102, 2009.

[46] General Packet Radio Service (GPRS) Enhancements for Evolved
Universal Terrestrial Radio Access Network (E-UTRAN) Access, 3GPP
Standard TS 23.401, 2011. [Online]. Available: http://www.3gpp.org/ftp/
Specs/html-info/23401.htm

[47] “Study of evolved packet core (EPC) nodes restoration,” 3GPP, Sophia
Antipolis, France, Rep. TR 23.857, 2012.

[48] Tunnelling Protocol for Control Plane (GTPv2-C), 3GPP Standard TS
29.274, 2014.

[49] “CISCO—Troubleshooting GTPC and GTPU and Associated
Path Failures.” [Online]. Available: https://www.cisco.com/c/en/us/
support/docs/wireless/asr-5000-series/200026-ASR-5000-Series-Trouble
shooting-GTPC-and.html (Accessed: May 28, 2022).

[50] GPRS Enhancements for E-UTRAN Access, 3GPP Standard TS 23.401,
2011.

[51] “Making Nova Database Highly Available with Pacemaker.” [Online].
Available: https://wiki.openstack.org/wiki/HAforNovaDB (Accessed:
May 28, 2022).

[52] R. Aranha, P. Tuck, J. E. Miller, C.-P. Wang, M.-A. Neimat, and
S. S. Cheung, “Database system with active standby and nodes.” U.S.
Patent 20 080 222 159 A1, 2008.

[53] W. Lang, F. Bertsch, D. J. DeWitt, and N. Ellis, “Microsoft azure
SQL database telemetry,” in Proc. ACM Symp. Cloud Comput., 2015,
pp. 189–194.

[54] W. Lin, “StreamScope: Continuous reliable distributed processing
of big data streams,” in Proc. USENIX NSDI, vol. 16, 2016,
pp. 439–453.

[55] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson, “Mojim: A reli-
able and highly-available non-volatile memory system,” ACM SIGARCH
Comput. Archit. News, vol. 43, no. 1, pp. 3–18, 2015.

[56] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for dis-
tributed systems,” IEEE Trans. Softw. Eng., vol. SE-13, no. 1, pp. 23–31,
Jan. 1987.

[57] J. L. Kim and T. Park, “An efficient protocol for checkpointing recovery
in distributed systems,” IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 8,
pp. 955–960, Aug. 1993.

[58] V. Fajardo, J. Arkko, J. Loughney, and G. Zorn, “Diameter base
protocol,” Internet Eng. Task Force, RFC 6733, 2012.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on March 06,2024 at 19:23:38 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

